Li T F, Ba D X, Zhou D W, et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electron Eng, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021
Citation: Li T F, Ba D X, Zhou D W, et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electron Eng, 2022, 49(9): 220021. doi: 10.12086/oee.2022.220021

Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering

    Fund Project: National Natural Science Foundation of China (62075051, 61975045) and Natural Science Foundation of Heilongjiang Province (LH2020F014)
More Information
  • Forward stimulated Brillouin scattering (F-SBS), a 3-order nonlinear effect in optical fibers, has become the hotspot in recent years, due to its great potential in substance identification, and fiber diameter measurement, etc. Through research and analysis of the progress of F-SBS, the main principle and key techniques are generalized in this paper. Distributed sensing schemes based on local light phase recovery, opto-mechanical time-domain reflectometry, and opto-mechanical time-domain analysis are emphatically introduced here. With the gradual practical application of F-SBS, the demand for distributed measurement of F-SBS with high precision and high spatial resolution becomes more and more significant, which will be the main research direction of F-SBS in optical fibers in the future.
  • 加载中
  • [1] Dong Y K. High-performance distributed brillouin optical fiber sensing[J]. Photonic Sens, 2021, 11(1): 69−90. doi: 10.1007/s13320-021-0616-7

    CrossRef Google Scholar

    [2] Liu T, Li H, He T, et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electron Adv, 2021, 4(5): 200037. doi: 10.29026/oea.2021.200037

    CrossRef Google Scholar

    [3] Guan B O, Jin L, Ma J, et al. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging[J]. Opto-Electron Adv, 2021, 4(8): 200081. doi: 10.29026/oea.2021.200081

    CrossRef Google Scholar

    [4] Zhang L, Pan J, Zhang Z, et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electron Adv, 2020, 3(3): 190022. doi: 10.29026/oea.2020.190022

    CrossRef Google Scholar

    [5] Tan F Z, Lyu W, Chen S Y, et al. Contactless vital signs monitoring based on few-mode and multi-core fibers[J]. Opto-Electron Adv, 2020, 3(5): 190034. doi: 10.29026/oea.2020.190034

    CrossRef Google Scholar

    [6] Liu S Q, Yu F H, Hong R, et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electron Adv, 2022, 5(3): 200078. doi: 10.29026/oea.2022.200078

    CrossRef Google Scholar

    [7] Zhang X Z, Yang B Y, Jiang J F, et al. Side-polished SMS based RI sensor employing macro-bending perfluorinated POF[J]. Opto-Electron Adv, 2021, 4(10): 200041. doi: 10.29026/oea.2021.200041

    CrossRef Google Scholar

    [8] Lou X T, Wang Y, Dong Y K. Multipoint dispersion spectroscopic gas sensing by optical FMCW interferometry[J]. Opt Lett, 2021, 46(23): 5950−5953. doi: 10.1364/OL.443126

    CrossRef Google Scholar

    [9] Lou X T, Feng Y B, Yang S H, et al. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy[J]. Photonics Res, 2021, 9(2): 193−201. doi: 10.1364/PRJ.411870

    CrossRef Google Scholar

    [10] Shelby R M, Levenson M D, Bayer P W. Guided acoustic-wave brillouin scattering[J]. Phys Rev B, 1985, 31(8): 5244−5252. doi: 10.1103/PhysRevB.31.5244

    CrossRef Google Scholar

    [11] Antman Y, Clain A, London Y, et al. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering[J]. Optica, 2016, 3(5): 510−516. doi: 10.1364/OPTICA.3.000510

    CrossRef Google Scholar

    [12] Hua Z J, Ba D X, Zhou D W, et al. Non-destructive and distributed measurement of optical fiber diameter with nanometer resolution based on coherent forward stimulated Brillouin scattering[J]. Light Adv Manuf, 2021, 2(4): 373−384. doi: 10.37188/lam.2021.025

    CrossRef Google Scholar

    [13] Sánchez L A, Díez A, Cruz J L, et al. High accuracy measurement of Poisson's ratio of optical fibers and its temperature dependence using forward-stimulated Brillouin scattering[J]. Opt Express, 2022, 30(1): 42−52. doi: 10.1364/OE.442295

    CrossRef Google Scholar

    [14] Tanaka Y, Ogusu K. Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering[J]. IEEE Photonics Technol Lett, 1998, 10(12): 1769−1771. doi: 10.1109/68.730497

    CrossRef Google Scholar

    [15] Tanaka Y, Ogusu K. Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering[J]. IEEE Photonics Technol Lett, 1999, 11(7): 865−867. doi: 10.1109/68.769734

    CrossRef Google Scholar

    [16] Brillouin L. Diffusion de la lumière et des rayons X par un corps transparent homogène: Influence de l'agitation thermique[J]. Ann Phys, 1922, 9(17): 88−122. doi: 10.1051/anphys/192209170088

    CrossRef Google Scholar

    [17] Gross E. The splitting of spectral lines at scattering of light by liquids[J]. Nature, 1930, 126(3176): 400. doi: 10.1038/126400a0

    CrossRef Google Scholar

    [18] Yuan D P, Chen P, Mao Z H, et al. Ocean mixed layer depth estimation using airborne Brillouin scattering lidar: simulation and model[J]. Appl Opt, 2021, 60(36): 11180−11188. doi: 10.1364/AO.442647

    CrossRef Google Scholar

    [19] Wei W, Mao Z, Sun N Y, et al. High pressure-temperature single-crystal elasticity of grossular: implications for the low-velocity layer in the bottom transition zone[J]. Geophys Res Lett, 2021, 48(9): e2021GL093540. doi: 10.1029/2021GL093540

    CrossRef Google Scholar

    [20] Horiguchi T, Tateda M. BOTDA - nondestructive measurement of single-mode optical fiber attenuation characteristics using brillouin interaction: theory[J]. J Light Technol, 1989, 7(8): 1170−1176. doi: 10.1109/50.32378

    CrossRef Google Scholar

    [21] Parker T R, Farhadiroushan M, Handerek V A, et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J]. Opt Lett, 1997, 22(11): 787−789. doi: 10.1364/OL.22.000787

    CrossRef Google Scholar

    [22] Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Appl Opt, 2012, 51(9): 1229−1235. doi: 10.1364/AO.51.001229

    CrossRef Google Scholar

    [23] Dong Y K, Ba D X, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics J, 2013, 5(3): 2600407. doi: 10.1109/JPHOT.2013.2267532

    CrossRef Google Scholar

    [24] Ba D X, Li Y, Yan J L, et al. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying[J]. Opt Express, 2019, 27(25): 36197−36205. doi: 10.1364/OE.27.036197

    CrossRef Google Scholar

    [25] Wang B Z, Ba D X, Chu Q, et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering[J]. Opto-Electron Adv, 2020, 3(12): 200013. doi: 10.29026/OEA.2020.200013

    CrossRef Google Scholar

    [26] Sittig E K, Coquin G A. Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation[J]. J Acoust Soc Am, 1970, 48(5B): 1150−1159. doi: 10.1121/1.1912255

    CrossRef Google Scholar

    [27] Thurston R N. Elastic waves in rods and clad rods[J]. J Acoust Soc Am, 1978, 64(1): 1−37. doi: 10.1121/1.381962

    CrossRef Google Scholar

    [28] Diamandi H H, Bashan G, London Y, et al. Interpolarization forward stimulated brillouin scattering in standard single-mode fibers[J]. Laser Photonics Rev, 2022, 16(1): 2100337. doi: 10.1002/lpor.202100337

    CrossRef Google Scholar

    [29] Horiguchi T, Kurashima T, Tateda M. A technique to measure distributed strain in optical fibers[J]. IEEE Photonics Technol Lett, 1990, 2(5): 352−354. doi: 10.1109/68.54703

    CrossRef Google Scholar

    [30] Kurashima T, Horiguchi T, Tateda M. Thermal effects of brillouin gain spectra in single-mode fibers[J]. IEEE Photonics Technol Lett, 1990, 2(10): 718−720. doi: 10.1109/68.60770

    CrossRef Google Scholar

    [31] Wang J, Zhu Y H, Zhang R, et al. FSBS resonances observed in a standard highly nonlinear fiber[J]. Opt Express, 2011, 19(6): 5339−5349. doi: 10.1364/OE.19.005339

    CrossRef Google Scholar

    [32] Chow D M, Thévenaz L. Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber[J]. Opt Letters, 2018, 43(21): 5467−5470. doi: 10.1364/OL.43.005467

    CrossRef Google Scholar

    [33] Diamandi H H, London Y, Bashan G, et al. Forward stimulated Brillouin scattering analysis of optical fibers coatings[J]. J Lightw Technol, 2021, 39(6): 1800−1807. doi: 10.1109/JLT.2020.3041352

    CrossRef Google Scholar

    [34] Diamandi H H, London Y, Bashan G, et al. Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide[J]. APL Photonics, 2019, 4(1): 016105. doi: 10.1063/1.5067271

    CrossRef Google Scholar

    [35] Pang C, Hua Z J, Zhou D W, et al. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing[J]. Optica, 2020, 7(2): 176−184. doi: 10.1364/OPTICA.381141

    CrossRef Google Scholar

    [36] Chow D M, Yang Z S, Soto M A, et al. Distributed forward Brillouin sensor based on local light phase recovery[J]. Nat Commun, 2018, 9(1): 2990. doi: 10.1038/s41467-018-05410-2

    CrossRef Google Scholar

    [37] 徐文英, 周静, 胡建恺. 甲基丙烯酸酯类共聚物的超声衰减与声速[J]. 材料科学进展, 1989, 3(3): 280−284. doi: 10.1007/BF02943117

    CrossRef Google Scholar

    Xu W Y, Zhou J, Hu J K. Ultrasonic attenuation and velocity on polymers[J]. Chin J Mater Res, 1989, 3(3): 280−284. doi: 10.1007/BF02943117

    CrossRef Google Scholar

    [38] Townsend P D, Poustie A J, Hardman P J, et al. Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers[J]. Opt Lett, 1996, 21(5): 333−335. doi: 10.1364/OL.21.000333

    CrossRef Google Scholar

    [39] Kang M S, Nazarkin A, Brenn A, et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators[J]. Nat Phys, 2009, 5(4): 276−280. doi: 10.1038/nphys1217

    CrossRef Google Scholar

    [40] Zheng Z, Li Z Y, Fu X L, et al. Multipoint acoustic impedance sensing based on frequency-division multiplexed forward stimulated Brillouin scattering[J]. Opt Lett, 2020, 45(16): 4523−4526. doi: 10.1364/OL.399054

    CrossRef Google Scholar

    [41] Bashan G, Diamandi H H, London Y, et al. Forward stimulated Brillouin scattering and opto-mechanical non-reciprocity in standard polarization maintaining fibres[J]. Light Sci Appl, 2021, 10(1): 119. doi: 10.1038/s41377-021-00557-y

    CrossRef Google Scholar

    [42] Zhao Z Y, Tang M, Lu C. Distributed multicore fiber sensors[J]. Opto-Electron Adv, 2020, 3(2): 190024. doi: 10.29026/oea.2020.190024

    CrossRef Google Scholar

    [43] Diamandi H H, London Y, Zadok A. Opto-mechanical inter-core cross-talk in multi-core fibers[J]. Optica, 2017, 4(3): 289−297. doi: 10.1364/OPTICA.4.000289

    CrossRef Google Scholar

    [44] Diamandi H H, London Y, Bergman A, et al. Opto-mechanical interactions in multi-core optical fibers and their applications[J]. IEEE J Sel Top Quantum Electron, 2020, 26(4): 2600113. doi: 10.1109/jstqe.2019.2958933

    CrossRef Google Scholar

    [45] Sánchez L A, Díez A, Cruz J L, et al. Efficient interrogation method of forward Brillouin scattering in optical fibers using a narrow bandwidth long-period grating[J]. Opt Lett, 2020, 45(19): 5331−5334. doi: 10.1364/OL.402783

    CrossRef Google Scholar

    [46] Zaslawski S, Yang Z S, Thévenaz L. Distributed optomechanical fiber sensing based on serrodyne analysis[J]. Optica, 2021, 8(3): 388−395. doi: 10.1364/OPTICA.414457

    CrossRef Google Scholar

    [47] Bashan G, Diamandi H H, London Y, et al. Optomechanical time-domain reflectometry[J]. Nat Commun, 2018, 9(1): 2991. doi: 10.1038/s41467-018-05404-0

    CrossRef Google Scholar

    [48] 逄超. 基于前向受激布里渊散射的高空间分辨率传感研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Google Scholar

    Pang C. High spatial resolution sensing based on forward stimulated brillouin scattering[D]. Harbin: Harbin Institute of Technology, 2019.

    Google Scholar

    [49] Ba D X, Hua Z J, Li Y J, et al. Polarization separation assisted optomechanical time-domain analysis with submeter resolution[J]. Opt Lett, 2021, 46(23): 5886−5889. doi: 10.1364/OL.445142

    CrossRef Google Scholar

  • The Brillouin optical fiber sensors have been well developed in the past decades, due to their capabilities of distributed sensing. With the introduction of new sensing mechanisms, the physical quantity can be measured by distributed Brillouin optical fiber sensors gradually increase. Forward stimulated Brillouin scattering (F-SBS) is one of the most typical representations of these new mechanisms, which allows unmarked substance identification with non-structures additional. The sensors based on F-SBS are expected to be used in pollution monitoring, chemical reaction monitoring, biomedical probes, and optical fiber manufacturing. The F-SBS sensors are promising methods for these and other applications which need high accuracy, and unmarked substance identification, and the distributed F-SBS sensors with the high spatial resolution are considered to greatly potential in the future.

    In the micron-sized symmetrical shapes, just like optical fiber, acoustic waves can be transmitted in cross-sections, reflected on the boundary, and with resonant frequencies ranging from megahertz (MHz) to gigahertz (GHz). It is called the transverse acoustic wave (TAW). TAW hardly transmits in the axial direction. When stimulated by intense optical waves propagating in the fiber core through electro-strictive, TAW can be considered moving with the same speed as an optical wave at the axial direction, so that a phase modulation (PM) caused by TAW can be loaded on co-propagating light, and F-SBS occurred. The lifetime of TAW will be extended to several microseconds when the optical fiber is placed in the air, without coating, and hundreds of nanoseconds in the liquids, which have a strict relationship with the acoustic impedance of the outside substance. By demodulated F-SBS induced PM, TAW can be recovered, which can be used to get the acoustic impedance of the outside substance. What’s more, the resonance frequency of the TAW is related to the diameter of the fiber, which allows an optical fiber diameter measurement method with high accuracy.

    Distributed F-SBS sensors are considered as powerful tools on substance identification and optical fiber quality inspection, which means high accuracy and spatial resolution are necessary. In 2018, the distributed F-SBS sensor based on local light phase recovery is proposed, and measured F-SBS via phase demodulation, with a 30 m spatial resolution on a 730 m optical fiber. In the same year, opto-mechanical time-domain reflectometry based on measurement of energy transferring is proposed, which has 100 m spatial resolution on 3 km fiber. In 2020, the team proposed opto-mechanical time-domain analysis (OMTDA), a 2 m spatial resolution on a 225 m fiber was achieved, and in 2021, polarization separate assisted OMTDA was proposed, with a spatial resolution of 0.8 m. The performance of distributed F-SBS sensors is ameliorated rapidly these few years.

    In summary, the basic principle, sensing scheme, and performance of F-SBS optical fiber sensors are introduced in this paper. With the F-SBS sensor applied in practice, increasing demand for high accuracy, and high spatial resolution emerges, which we believe will be dominant in the research of substance identification sensors in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint