Cui X Q, Xie R R, Liu H L, et al. Lithium niobate metasurfaces: preparation and photonics applications[J]. Opto-Electron Eng, 2022, 49(10): 220093. doi: 10.12086/oee.2022.220093
Citation: Cui X Q, Xie R R, Liu H L, et al. Lithium niobate metasurfaces: preparation and photonics applications[J]. Opto-Electron Eng, 2022, 49(10): 220093. doi: 10.12086/oee.2022.220093

Lithium niobate metasurfaces: preparation and photonics applications

    Fund Project: National Key Research and Development Program of China (2019YFA0705000), National Natural Science Foundation of China (12134009), Shandong Provincial Natural Science Foundation (ZR2021ZD02, 2022HWYQ-047), Taishan Scholar Foundation of Shandong Province (tsqn201909041, tspd20210303), and “Qilu Young Scholar Program” of Shandong University, China.
More Information
  • As derivatives of 3D metamaterials, artificial metasurface structures with sub-wavelength thicknesses can flexibly manipulate light-matter interactions in a compact manner, which is beneficial for the fabrication of multi-functional and ultracompact photonic devices. Therefore, metasurface structures are of great significance for micro-nano photonics and integrated photonics. The ferroelectric crystal lithium niobate is regarded as one of the most promising multifunctional integrated photonic platforms due to its wide transparent window spanning from the visible to the mid-infrared band as well as large nonlinear optical and electro-optic coefficients. In recent years, research on integrated photonics devices based on lithium-niobate-on-insulator (LNOI) thin films has also been developed rapidly. In this paper, several micro-nano processing technologies that have the potential to prepare high-quality lithium niobate metasurfaces are summarized. At the same time, the research progress of lithium niobate metasurface structures in recent years is introduced, and its future research directions are prospected.
  • 加载中
  • [1] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nat Mater, 2012, 11(11): 917−924. doi: 10.1038/nmat3431

    CrossRef Google Scholar

    [2] Ren M X, Cai W, Xu J J. Tailorable dynamics in nonlinear optical metasurfaces[J]. Adv Mater, 2020, 32(3): 1806317. doi: 10.1002/adma.201806317

    CrossRef Google Scholar

    [3] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [4] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nat Rev Mater, 2017, 2(1): 17010. doi: 10.1038/natrevmats.2017.10

    CrossRef Google Scholar

    [5] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Mater Today, 2018, 21(1): 8−21. doi: 10.1016/j.mattod.2017.06.007

    CrossRef Google Scholar

    [6] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [7] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015): 290−291. doi: 10.1126/science.1198258

    CrossRef Google Scholar

    [8] Ye W M, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nat Commun, 2016, 7(1): 11930. doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [9] Gomes A S L, Maldonado M, de S. Menezes L, et al. Linear and third-order nonlinear optical properties of self-assembled plasmonic gold metasurfaces[J]. Nanophotonics, 2020, 9(4): 725−740. doi: 10.1515/nanoph-2019-0521

    CrossRef Google Scholar

    [10] Deng J H, Tang Y T, Chen S M, et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface[J]. Nano Lett, 2020, 20(7): 5421−5427. doi: 10.1021/acs.nanolett.0c01810

    CrossRef Google Scholar

    [11] Wu W, Ren M X, Pi B, et al. Displacement sensor based on plasmonic slot metamaterials[J]. Appl Phys Lett, 2016, 108(7): 073106. doi: 10.1063/1.4940909

    CrossRef Google Scholar

    [12] Li Z, Wang C T, Kong W J, et al. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electron Eng, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466

    CrossRef Google Scholar

    [13] 张俊卿, 吴毅萍, 陈晟皓, 等. 改进型蝴蝶结超表面及在痕量铅离子检测中的应用[J]. 光电工程, 2021, 48(8): 210123. doi: 10.12086/oee.2021.210123

    CrossRef Google Scholar

    Zhang J Q, Wu Y P, Chen S H, et al. Optimized bow-tie metasurface and its application in trace detection of lead ion[J]. Opto-Electron Eng, 2021, 48(8): 210123. doi: 10.12086/oee.2021.210123

    CrossRef Google Scholar

    [14] Li L, Liu Z X, Ren X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498): 1487−1490. doi: 10.1126/science.aba9779

    CrossRef Google Scholar

    [15] Liu J, Shi M Q, Chen Z, et al. Quantum photonics based on metasurfaces[J]. Opto-Electron Adv, 2021, 4(9): 200092. doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [16] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nat Nanotechnol, 2016, 11(1): 23−36. doi: 10.1038/nnano.2015.304

    CrossRef Google Scholar

    [17] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): aag2472. doi: 10.1126/science.aag2472

    CrossRef Google Scholar

    [18] Liu H Z, Guo C, Vampa G, et al. Enhanced high-harmonic generation from an all-dielectric metasurface[J]. Nat Phys, 2018, 14(10): 1006−1010. doi: 10.1038/s41567-018-0233-6

    CrossRef Google Scholar

    [19] Zhu W, Yang R S, Geng G Z, et al. Titanium dioxide metasurface manipulating high-efficiency and broadband photonic spin Hall effect in visible regime[J]. Nanophotonics, 2020, 9(14): 4327−4335. doi: 10.1515/nanoph-2020-0290

    CrossRef Google Scholar

    [20] Liu S, Vabishchevich P P, Vaskin A, et al. An all-dielectric metasurface as a broadband optical frequency mixer[J]. Nat Commun, 2018, 9(1): 2507. doi: 10.1038/s41467-018-04944-9

    CrossRef Google Scholar

    [21] Fang C Z, Yang Q Y, Yuan Q C, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 2021, 4(6): 200030. doi: 10.29026/oea.2021.200030

    CrossRef Google Scholar

    [22] Cao T, Lian M, Chen X Y, et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials[J]. Opto-Electron Sci, 2022, 1(1): 210010. doi: 10.29026/oes.2022.210010

    CrossRef Google Scholar

    [23] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J]. Appl Phys A, 1985, 37(4): 191−203. doi: 10.1007/BF00614817

    CrossRef Google Scholar

    [24] Kong Y F, Bo F, Wang W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Adv Mater, 2020, 32(3): 1806452. doi: 10.1002/adma.201806452

    CrossRef Google Scholar

    [25] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Phys Status Solidi (A), 2004, 201(2): 253−283. doi: 10.1002/pssa.200303911

    CrossRef Google Scholar

    [26] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser Photon Rev, 2012, 6(4): 488−503. doi: 10.1002/lpor.201100035

    CrossRef Google Scholar

    [27] Boes A, Corcoran B, Chang L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser Photon Rev, 2018, 12(4): 1700256. doi: 10.1002/lpor.201700256

    CrossRef Google Scholar

    [28] Zhang M, Wang C, Cheng R, et al. Monolithic ultrahigh-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536−1537. doi: 10.1364/optica.4.001536

    CrossRef Google Scholar

    [29] Wu R B, Wang M, Xu J, et al. Long Low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. doi: 10.3390/nano8110910

    CrossRef Google Scholar

    [30] Wolf R, Breunig I, Zappe H, et al. Scattering-loss reduction of ridge waveguides by sidewall polishing[J]. Opt Express, 2018, 26(16): 19815−19820. doi: 10.1364/OE.26.019815

    CrossRef Google Scholar

    [31] Siew S Y, Cheung E J H, Liang H D, et al. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening[J]. Opt Express, 2018, 26(4): 4421−4430. doi: 10.1364/OE.26.004421

    CrossRef Google Scholar

    [32] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101−104. doi: 10.1038/s41586-018-0551-y

    CrossRef Google Scholar

    [33] He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond[J]. Nat Photonics, 2019, 13(5): 359−364. doi: 10.1038/s41566-019-0378-6

    CrossRef Google Scholar

    [34] Weigel P O, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Opt Express, 2018, 26(18): 23728−23739. doi: 10.1364/OE.26.023728

    CrossRef Google Scholar

    [35] Mercante A J, Shi S Y, Yao P, et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth[J]. Opt Express, 2018, 26(11): 14810−14816. doi: 10.1364/OE.26.014810

    CrossRef Google Scholar

    [36] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373−377. doi: 10.1038/s41586-019-1008-7

    CrossRef Google Scholar

    [37] He Y, Yang Q F, Ling J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 2019, 6(9): 1138−1144. doi: 10.1364/OPTICA.6.001138

    CrossRef Google Scholar

    [38] Wang C, Zhang M, Yu M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nat Commun, 2019, 10(1): 978. doi: 10.1038/s41467-019-08969-6

    CrossRef Google Scholar

    [39] Wang C, Langrock C, Marandi A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438−1441. doi: 10.1364/OPTICA.5.001438

    CrossRef Google Scholar

    [40] Chen J Y, Ma Z H, Sua Y M, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings[J]. Optica, 2019, 6(9): 1244−1245. doi: 10.1364/OPTICA.6.001244

    CrossRef Google Scholar

    [41] Lu J J, Surya J B, Liu X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455−1460. doi: 10.1364/OPTICA.6.001455

    CrossRef Google Scholar

    [42] Elkus B S, Abdelsalam K, Rao A, et al. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides[J]. Opt Express, 2019, 27(26): 38521−38531. doi: 10.1364/OE.27.038521

    CrossRef Google Scholar

    [43] Zhao J, Ma C X, Rüsing M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Phys Rev Lett, 2020, 124(16): 163603. doi: 10.1103/PhysRevLett.124.163603

    CrossRef Google Scholar

    [44] Zhu D, Shao L B, Yu M J, et al. Integrated photonics on thin-film lithium niobate[J]. Adv Opt Photonics, 2021, 13(2): 242−352. doi: 10.1364/AOP.411024

    CrossRef Google Scholar

    [45] Jia Y C, Wang L, Chen F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Appl Phys Rev, 2021, 8(1): 011307. doi: 10.1063/5.0037771

    CrossRef Google Scholar

    [46] Goodberlet J G, Dunn B L. Deep-ultraviolet contact photolithography[J]. Microelectron Eng, 2000, 53(1–4): 95−99. doi: 10.1016/S0167-9317(00)00272-0

    CrossRef Google Scholar

    [47] Pease R F W. Electron beam lithography[J]. Contemp Phys, 1981, 22(3): 265−290. doi: 10.1080/00107518108231531

    CrossRef Google Scholar

    [48] Vieu C, Carcenac F, Pépin A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000, 164(1–4): 111−117. doi: 10.1016/S0169-4332(00)00352-4

    CrossRef Google Scholar

    [49] Ren Z, Heard P J, Marshall J M, et al. Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma[J]. J Appl Phys, 2008, 103(3): 034109. doi: 10.1063/1.2838180

    CrossRef Google Scholar

    [50] Deng J, Si G Y, Danner A J. Dry etching of LiNbO3 using inductively coupled plasma[C]//Proceedings of 2010 Photonics Global Conference, 2010: 1–5. doi: 10.1109/PGC.2010.5706006.

    Google Scholar

    [51] Chang C M, Yu C S, Hsieh F C, et al. A parametric study of ICP-RIE etching on a lithium niobate substrate[C]//Proceedings of the 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2015: 485–486. doi: 10.1109/NEMS.2015.7147473.

    Google Scholar

    [52] Chen G Y, Cheung E J H, Cao Y, et al. Analysis of perovskite oxide etching using argon inductively coupled plasmas for photonics applications[J]. Nanoscale Res Lett, 2021, 16(1): 32. doi: 10.1186/s11671-021-03494-2

    CrossRef Google Scholar

    [53] Shen C, Wang C L, Zhu Y F, et al. A comparative study of dry-etching nanophotonic devices on a LiNbO3-on-insulator material platform[J]. Proc SPIE, 2021, 11781: 117810X. doi: 10.1117/12.2590415

    CrossRef Google Scholar

    [54] Wang C, Burek M J, Lin Z N, et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Opt Express, 2014, 22(25): 30924−30933. doi: 10.1364/OE.22.030924

    CrossRef Google Scholar

    [55] Wang C, Xiong X, Andrade N, et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides[J]. Opt Express, 2017, 25(6): 6963−6973. doi: 10.1364/OE.25.006963

    CrossRef Google Scholar

    [56] Hu H, Milenin A P, Wehrspohn R B, et al. Plasma etching of proton-exchanged lithium niobate[J]. J Vac Sci Technol A, 2006, 24(4): 1012−1015. doi: 10.1116/1.2207150

    CrossRef Google Scholar

    [57] Nagata H, Mitsugi N, Shima K, et al. Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates[J]. J Cryst Growth, 1998, 187(3–4): 573−576. doi: 10.1016/S0022-0248(98)00009-8

    CrossRef Google Scholar

    [58] Mitsugi N, Nagata H. Challenges in electron cyclotron resonance plasma etching of LiNbO3 surface for fabrication of ridge optical waveguides[J]. J Vac Sci Technol A, 1998, 16(4): 2245−2251. doi: 10.1116/1.581334

    CrossRef Google Scholar

    [59] Rusing M, Weigel P O, Zhao J, et al. Toward 3D integrated photonics including lithium niobate thin films: a bridge between electronics, radio frequency, and optical technology[J]. IEEE Nanotechnol Mag, 2019, 13(4): 18−33. doi: 10.1109/MNANO.2019.2916115

    CrossRef Google Scholar

    [60] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287−1320. doi: 10.1515/nanoph-2020-0013

    CrossRef Google Scholar

    [61] Honardoost A, Abdelsalam K, Fathpour S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser Photon Rev, 2020, 14(9): 2000088. doi: 10.1002/lpor.202000088

    CrossRef Google Scholar

    [62] Wang C, Zhang M, Lončar M. High-Q lithium niobate microcavities and their applications[M]//Xiao Y F, Zou C L, Gong Q H, et al. Ultra-High-Q Optical Microcavities. Singapore: World Scientific, 2020: 1–35. doi: 10.1142/9789814566070_0001.

    Google Scholar

    [63] Sakashita Y, Segawa H. Preparation and characterization of LiNbO3 thin films produced by chemical‐vapor deposition[J]. J Appl Phys, 1995, 77(11): 5995−5999. doi: 10.1063/1.359183

    CrossRef Google Scholar

    [64] Fedotova A, Younesi M, Sautter J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Lett, 2020, 20(12): 8608−8614. doi: 10.1021/acs.nanolett.0c03290

    CrossRef Google Scholar

    [65] Weigand H, Vogler-Neuling V V, Escalé M R, et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate[J]. ACS Photonics, 2021, 8(10): 3004−3009. doi: 10.1021/acsphotonics.1c00935

    CrossRef Google Scholar

    [66] Krasnokutska I, Tambasco J L J, Li X J, et al. Ultra-low loss photonic circuits in lithium niobate on insulator[J]. Opt Express, 2018, 26(2): 897−904. doi: 10.1364/OE.26.000897

    CrossRef Google Scholar

    [67] Ulliac G, Calero V, Ndao A, et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application[J]. Opt Mater, 2016, 53: 1−5. doi: 10.1016/j.optmat.2015.12.040

    CrossRef Google Scholar

    [68] Hu H, Ricken R, Sohler W. Etching of lithium niobate: from ridge waveguides to photonic crystal structures[C]//Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, 2008: 75–78.

    Google Scholar

    [69] Gui L, Hu H, Garcia-Granda M, et al. Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation[J]. Opt Express, 2009, 17(5): 3923−3928. doi: 10.1364/OE.17.003923

    CrossRef Google Scholar

    [70] Lin J T, Xu Y X, Fang Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Sci Rep, 2015, 5: 8072. doi: 10.1038/srep08072

    CrossRef Google Scholar

    [71] Lin J T, Xu Y X, Fang Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[J]. Sci China Phys Mech Astron, 2015, 58(11): 114209. doi: 10.1007/s11433-015-5728-x

    CrossRef Google Scholar

    [72] Gao B F, Ren M X, Wu W, et al. Lithium niobate metasurfaces[J]. Laser Photon Rev, 2019, 13(5): 1800312. doi: 10.1002/lpor.201800312

    CrossRef Google Scholar

    [73] Carletti L, Zilli A, Moia F, et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface[J]. ACS Photonics, 2021, 8(3): 731−737. doi: 10.1021/acsphotonics.1c00026

    CrossRef Google Scholar

    [74] Wang M, Wu R B, Lin J T, et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Eng, 2019, 1(1): e9. doi: 10.1002/que2.9

    CrossRef Google Scholar

    [75] Wolf R, Breunig I, Zappe H, et al. Cascaded second-order optical nonlinearities in on-chip micro rings[J]. Opt Express, 2017, 25(24): 29927−29933. doi: 10.1364/OE.25.029927

    CrossRef Google Scholar

    [76] Fang Z W, Haque S, Lin J T, et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator[J]. Opt Lett, 2019, 44(5): 1214−1217. doi: 10.1364/OL.44.001214

    CrossRef Google Scholar

    [77] Gao R H, Zhang H S, Bo F, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108[J]. New J Phys, 2021, 23(12): 123027. doi: 10.1088/1367-2630/ac3d52

    CrossRef Google Scholar

    [78] Gao R H, Yao N, Guan J L, et al. Lithium niobate microring with ultra-high Q factor above 108[J]. Chin Opt Lett, 2022, 20(1): 011902. doi: 10.3788/COL202220.011902

    CrossRef Google Scholar

    [79] Zhang J H, Fang Z W, Lin J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 2019, 9(9): 1218. doi: 10.3390/nano9091218

    CrossRef Google Scholar

    [80] Liu S, Sinclair M B, Saravi S, et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces[J]. Nano Lett, 2016, 16(9): 5426−5432. doi: 10.1021/acs.nanolett.6b01816

    CrossRef Google Scholar

    [81] Carletti L, Marino G, Ghirardini L, et al. Nonlinear goniometry by second-harmonic generation in AlGaAs nanoantennas[J]. ACS Photonics, 2018, 5(11): 4386−4392. doi: 10.1021/acsphotonics.8b00810

    CrossRef Google Scholar

    [82] Carletti L, Rocco D, Locatelli A, et al. Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas[J]. Nanotechnology, 2017, 28(11): 114005. doi: 10.1088/1361-6528/aa5645

    CrossRef Google Scholar

    [83] Lin J T, Yao N, Hao Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Phys Rev Lett, 2019, 122(17): 173903. doi: 10.1103/PhysRevLett.122.173903

    CrossRef Google Scholar

    [84] Lehr D, Reinhold J, Thiele I, et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate[J]. Nano Lett, 2015, 15(2): 1025−1030. doi: 10.1021/nl5038819

    CrossRef Google Scholar

    [85] Gigli C, Leo G. All-dielectric χ(2) metasurfaces: recent progress[J]. Opto-Electron Adv, 2022, 5(7): 210093. doi: 10.29026/oea.2022.210093

    CrossRef Google Scholar

    [86] Wei D Z, Wang C W, Wang H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nat Photonics, 2018, 12(10): 596−600. doi: 10.1038/s41566-018-0240-2

    CrossRef Google Scholar

    [87] Liang H X, Luo R, He Y, et al. High-quality lithium niobate photonic crystal nanocavities[J]. Optica, 2017, 4(10): 1251−1258. doi: 10.1364/OPTICA.4.001251

    CrossRef Google Scholar

    [88] Wang C, Li Z Y, Kim M H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides[J]. Nat Commun, 2017, 8(1): 2098. doi: 10.1038/s41467-017-02189-6

    CrossRef Google Scholar

    [89] Wang L, Wang C, Wang J, et al. High-Q chaotic lithium niobate microdisk cavity[J]. Opt Lett, 2018, 43(12): 2917−2920. doi: 10.1364/OL.43.002917

    CrossRef Google Scholar

    [90] Boes A, Chang L, Knoerzer M, et al. Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage[J]. Opt Express, 2019, 27(17): 23919−23928. doi: 10.1364/OE.27.023919

    CrossRef Google Scholar

    [91] Rao A, Abdelsalam K, Sjaardema T, et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W−1cm−2[J]. Opt Express, 2019, 27(18): 25920−25930. doi: 10.1364/OE.27.025920

    CrossRef Google Scholar

    [92] Lu J J, Li M, Zou C L, et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators[J]. Optica, 2020, 7(12): 1654−1659. doi: 10.1364/OPTICA.403931

    CrossRef Google Scholar

    [93] Li M X, Liang H X, Luo R, et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators[J]. Laser Photon Rev, 2019, 13(5): 1800228. doi: 10.1002/lpor.201800228

    CrossRef Google Scholar

    [94] Minkov M, Gerace D, Fan S H. Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum[J]. Optica, 2019, 6(8): 1039−1045. doi: 10.1364/OPTICA.6.001039

    CrossRef Google Scholar

    [95] Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nat Commun, 2017, 8(1): 17. doi: 10.1038/s41467-017-00019-3

    CrossRef Google Scholar

    [96] Löchner F J F, Fedotova A N, Liu S, et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces[J]. Acs Photonics, 2018, 5(5): 1786−1793. doi: 10.1021/acsphotonics.7b01533

    CrossRef Google Scholar

    [97] Kim K H, Rim W S. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation[J]. ACS Photonics, 2018, 5(12): 4769−4775. doi: 10.1021/acsphotonics.8b01287

    CrossRef Google Scholar

    [98] Huang Z J, Lu H H, Xiong H Q, et al. Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation[J]. Nanomaterials, 2019, 9(1): 69. doi: 10.3390/nano9010069

    CrossRef Google Scholar

    [99] Timpu F, Sendra J, Renaut C, et al. Lithium niobate nanocubes as linear and nonlinear ultraviolet Mie resonators[J]. ACS Photonics, 2019, 6(2): 545−552. doi: 10.1021/acsphotonics.8b01594

    CrossRef Google Scholar

    [100] Wang J Y, Liu Z J, Xiang J, et al. Ultraviolet second harmonic generation from Mie-resonant lithium niobate nanospheres[J]. Nanophotonics, 2021, 10(17): 4273−4278. doi: 10.1515/nanoph-2021-0326

    CrossRef Google Scholar

    [101] Ma J J, Xie F, Chen W J, et al. Nonlinear lithium niobate metasurfaces for second harmonic generation[J]. Laser Photon Rev, 2021, 15(5): 2000521. doi: 10.1002/LPOR.202000521

    CrossRef Google Scholar

    [102] Li Y, Nemilentsau A, Argyropoulos C. Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems[J]. Nanoscale, 2019, 11(31): 14635−14647. doi: 10.1039/C9NR05083C

    CrossRef Google Scholar

    [103] Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres[J]. Nature, 2021, 589(7841): 214−219. doi: 10.1038/s41586-020-03093-8

    CrossRef Google Scholar

    [104] Prevedel R, Walther P, Tiefenbacher F, et al. High-speed linear optics quantum computing using active feed-forward[J]. Nature, 2007, 445(7123): 65−69. doi: 10.1038/nature05346

    CrossRef Google Scholar

    [105] Daiss S, Langenfeld S, Welte S, et al. A quantum-logic gate between distant quantum-network modules[J]. Science, 2021, 371(6529): 614−617. doi: 10.1126/science.abe3150

    CrossRef Google Scholar

    [106] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 2008, 321(5895): 1463−1465. doi: 10.1126/science.1160627

    CrossRef Google Scholar

    [107] Barry J F, Turner M J, Schloss J M, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond[J]. Proc Natl Acad Sci USA, 2016, 113(49): 14133−14138. doi: 10.1073/pnas.1601513113

    CrossRef Google Scholar

    [108] Cheng X, Sarihan M C, Chang K C, et al. Design of spontaneous parametric down-conversion in integrated hybrid SixNy-PPLN waveguides[J]. Opt Express, 2019, 27(21): 30773−30787. doi: 10.1364/OE.27.030773

    CrossRef Google Scholar

    [109] Introini V, Steel M J, Sipe J E, et al. Spontaneous parametric down conversion in a doubly resonant one-dimensional photonic crystal[J]. Opt Lett, 2020, 45(5): 1244−1247. doi: 10.1364/OL.385741

    CrossRef Google Scholar

    [110] Nikolaeva A, Frizyuk K, Olekhno N, et al. Directional emission of down-converted photons from a dielectric nanoresonator[J]. Phys Rev A, 2021, 103(4): 043703. doi: 10.1103/PHYSREVA.103.043703

    CrossRef Google Scholar

    [111] Marino G, Solntsev A S, Xu L, et al. Spontaneous photon-pair generation from a dielectric nanoantenna[J]. Optica, 2019, 6(11): 1416−1422. doi: 10.1364/OPTICA.6.001416

    CrossRef Google Scholar

    [112] Santiago-Cruz T, Fedotova A, Sultanov V, et al. Photon pairs from resonant metasurfaces[J]. Nano Lett, 2021, 21(10): 4423−4429. doi: 10.1021/acs.nanolett.1c01125

    CrossRef Google Scholar

    [113] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [114] He Q, Sun S L, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 2019: 1849272. doi: 10.34133/2019/1849272

    CrossRef Google Scholar

    [115] Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 2022, 5(4): 200098. doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [116] Nemati A, Wang Q, Ang N S S, et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 2021, 4(7): 200088. doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [117] Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nat Photonics, 2017, 11(10): 628−633. doi: 10.1038/s41566-017-0002-6

    CrossRef Google Scholar

    [118] Yin X H, Schäferling M, Michel A K U, et al. Active chiral plasmonics[J]. Nano Lett, 2015, 15(7): 4255−4260. doi: 10.1021/nl5042325

    CrossRef Google Scholar

    [119] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nat Commun, 2017, 8: 14606. doi: 10.1038/ncomms14606

    CrossRef Google Scholar

    [120] Karvounis A, Vogler-Neuling V V, Richter F U, et al. Electro-optic metasurfaces based on barium titanate nanoparticle films[J]. Adv Opt Mater, 2020, 8(17): 2000623. doi: 10.1002/adom.202000623

    CrossRef Google Scholar

    [121] Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE J Sel Top Quantum Electron, 2000, 6(1): 69−82. doi: 10.1109/2944.826874

    CrossRef Google Scholar

    [122] Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nat Commun, 2020, 11(1): 4123. doi: 10.1038/s41467-020-17950-7

    CrossRef Google Scholar

    [123] Bo F, Wang J, Cui J, et al. Lithium-niobate–silica hybrid whispering-gallery-mode resonators[J]. Adv Mater, 2015, 27(48): 8075−8081. doi: 10.1002/adma.201504722

    CrossRef Google Scholar

    [124] Timpu F, Weigand H, Kaufmann F, et al. Towards active electro-optic lithium niobate metasurfaces[J]. EPJ Web Conf, 2020, 238: 05003. doi: 10.1051/epjconf/202023805003

    CrossRef Google Scholar

    [125] Gao B F, Ren M X, Wu W, et al. Electro-optic lithium niobate metasurfaces[J]. Sci China Phys Mech Astron, 2021, 64(4): 240362. doi: 10.1007/s11433-021-1668-y

    CrossRef Google Scholar

    [126] Maker P D, Terhune R W, Nisenoff M, et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Phys Rev Lett, 1962, 8(1): 21−22. doi: 10.1103/PhysRevLett.8.21

    CrossRef Google Scholar

    [127] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric[J]. Phys Rev, 1962, 127(6): 1918−1939. doi: 10.1103/PhysRev.127.1918

    CrossRef Google Scholar

    [128] Chen J Y, Sua Y M, Fan H, et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics[J]. OSA Continuum, 2018, 1(1): 229−242. doi: 10.1364/OSAC.1.000229

    CrossRef Google Scholar

    [129] Fang B, Li H M, Zhu S N, et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Res, 2020, 8(8): 1296−1300. doi: 10.1364/PRJ.391850

    CrossRef Google Scholar

    [130] Fang B, Wang Z Z, Gao S L, et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 2022, 11(9): 1923−1930. doi: 10.1515/nanoph-2021-0466

    CrossRef Google Scholar

    [131] Zhang D, Ren M X, Wu W, et al. Nanoscale beam splitters based on gradient metasurfaces[J]. Opt Lett, 2018, 43(2): 267−270. doi: 10.1364/OL.43.000267

    CrossRef Google Scholar

    [132] Wang R D, Wu Q, Zhang Y Q, et al. Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures[J]. Appl Phys Lett, 2019, 114(12): 121102. doi: 10.1063/1.5087609

    CrossRef Google Scholar

  • Two-dimensional metasurfaces constructed from sub-wavelength size meta-atoms can flexibly control the local distribution of electromagnetic fields, which has attracted extensive attention in recent years. The polarization, phase and amplitude of electromagnetic waves can be controlled with subwavelength resolution by properly designing the nanostructure of the metasurfaces. Compared with 3D metamaterials, 2D metasurfaces can not only greatly alleviate the high resistance losses accumulated in traditional metamaterials, but also avoid the manufacturing requirements of complex 3D nanostructures. In addition, the sub-wavelength thickness of the metasurfaces has significant integration advantages, which makes it possible to develop ultra-compact photonic devices with a variety of optical functions, which is of great significance to micro/nano photonics and integrated photonics. Especially in the field of nonlinear optics, metasurfaces can alleviate or even completely overcome the requirement of phase matching to some extent, thus showing a strong nonlinear optical response. Metal materials exhibit significant ohmic losses in other wavebands except microwave, resulting in a relatively low optical quality factor of traditional plasmonic metasurfaces, which also limits their application in many functional nano-photonic devices. Furthermore, some precious metals (such as gold and silver, etc.) are not only expensive to manufacture, but also incompatible with traditional Complementary Metal Oxide Semiconductor (CMOS) processes. In view of this, dielectric metasurfaces compatible with semiconductor technology have gradually become a research focus. Ferroelectric lithium niobate (LiNbO3) is known as "optical silicon" because of its transparent window from visible to mid-infrared band (0.35-5 μm), relatively high refractive index, excellent electro-optic (EO) and second-order nonlinear optical properties, as well as excellent acoustooptic and piezoelectric properties. These unique properties make lithium niobate one of the most widely used materials in photonics, and it is an ideal substrate material for realizing efficient dielectric metasurfaces.

    With the rapid development of lithium-niobate-on-insulator (LNOI) thin film technology and related surface micro-nano manufacturing technology in recent years, a series of high-quality and high-performance photonic functional devices on lithium niobate chip have been realized, such as compact modulators with ultra-high performance, broadband frequency combs, as well as high-efficiency optical frequency converters and single-photon sources. Great progress has been made in nonlinear optical frequency conversion, electro-optic modulation and optical passivity. In this paper, we briefly introduce several micro-nano processing technologies that have the potential to produce high-quality lithium niobate metasurfaces, and summarize the recent research progress in optical frequency conversion, electro-optic modulation, optical passivity and other aspects of lithium niobate metasurfaces, and prospected the potential research directions in the field of micro-nano optics.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint