Chen R, Wang J C, Zhang W Z, et al. Research progress of laser manufacturing technology for microstructure sensor[J]. Opto-Electron Eng, 2023, 50(3): 220041. doi: 10.12086/oee.2023.220041
Citation: Chen R, Wang J C, Zhang W Z, et al. Research progress of laser manufacturing technology for microstructure sensor[J]. Opto-Electron Eng, 2023, 50(3): 220041. doi: 10.12086/oee.2023.220041

Research progress of laser manufacturing technology for microstructure sensor

    Fund Project: Regional Innovation and Development Joint Fund (U21A20136), National Science Fund for Excellent Young Scholars (51922092), the Fundamental Research Funds for the Central Universities (20720200068), and Funded by Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (GZKF-202103)
More Information
  • Microstructure sensor is a sensor device with the micro-scale structure as a sensitive unit and can convert external physical, chemical, and biological signals into electrical signals. It has been widely used in intelligent robots, health monitoring, virtual electronics, and other fields. At present, the manufacturing methods of microstructure sensors mainly include laser manufacturing technology, MEMS technology, and 3D printing technology. Laser manufacturing technology is a green processing method that focuses the high-energy laser beam on the object to be processed and makes the laser interact with the material, mainly including laser ablation, laser direct writing, laser induction, and laser-template composite processing. It has the advantages of non-contact processing, no mask, and customizable manufacturing. By optimizing the parameters of the laser manufacturing process, it can realize the efficient and low-cost manufacturing of microstructures with different sizes and shapes. In this paper, the types, function, and manufacturing technology of the microstructures are summarized. At the same time, the microstructure sensors fabricated by laser manufacturing technology are summarized and classified, and the manufacturing technology and application of bioelectric sensors, temperature sensors and pressure sensors are analyzed in detail. Finally, the development trends of the laser manufacturing technology for microstructure sensors are summarized and prospected.
  • 加载中
  • [1] Ruth S R A, Feig V R, Tran H, et al. Microengineering pressure sensor active layers for improved performance[J]. Adv Funct Mater, 2020, 30(39): 2003491. doi: 10.1002/adfm.202003491

    CrossRef Google Scholar

    [2] Satti A T, Park J, Park J, et al. Fabrication of parylene-coated microneedle array electrode for wearable ECG device[J]. Sensors, 2020, 20(18): 5183. doi: 10.3390/s20185183

    CrossRef Google Scholar

    [3] Jiang H, Zhang X, Gu W, et al. Synthesis of ZnO particles with multi-layer and biomorphic porous microstructures and ZnO/rGO composites and their applications for photocatalysis[J]. Chem Phys Lett, 2018, 711: 100−106. doi: 10.1016/j.cplett.2018.08.013

    CrossRef Google Scholar

    [4] Chao M Y, Wang Y G, Ma D, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing[J]. Nano Energy, 2020, 78: 105187. doi: 10.1016/j.nanoen.2020.105187

    CrossRef Google Scholar

    [5] Schwartz G, Tee B C K, Mei J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nat Commun, 2013, 4: 1859. doi: 10.1038/ncomms2832

    CrossRef Google Scholar

    [6] Billard A, Kragic D. Trends and challenges in robot manipulation[J]. Science, 2019, 364(6446): eaat8414. doi: 10.1126/science.aat8414

    CrossRef Google Scholar

    [7] Yang J C, Mun J, Kwon S Y, et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics[J]. Adv Mater, 2019, 31(48): 1904765. doi: 10.1002/adma.201904765

    CrossRef Google Scholar

    [8] Tran A V, Zhang X M, Zhu B L. The development of a new piezoresistive pressure sensor for low pressures[J]. IEEE Trans Ind Electron, 2018, 65(8): 6487−6496. doi: 10.1109/TIE.2017.2784341

    CrossRef Google Scholar

    [9] Li J, Bao R R, Tao J, et al. Recent progress in flexible pressure sensor arrays: from design to applications[J]. J Mater Chem C, 2018, 6(44): 11878−11892. doi: 10.1039/C8TC02946F

    CrossRef Google Scholar

    [10] Tachi S, Tsujimoto K, Okudaira S. Low-temperature reactive ion etching and microwave plasma etching of silicon[J]. Appl Phys Lett, 1988, 52(8): 616−618. doi: 10.1063/1.99382

    CrossRef Google Scholar

    [11] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chem Phys Lett, 1998, 292(4–6): 567−574. doi: 10.1016/S0009-2614(98)00745-3

    CrossRef Google Scholar

    [12] Martin C R, Van Dyke L S, Cai Z H, et al. Template synthesis of organic microtubules[J]. J Am Chem Soc, 1990, 112(24): 8976−8977. doi: 10.1021/ja00180a050

    CrossRef Google Scholar

    [13] Whitesides G M, Grzybowski B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418−2421. doi: 10.1126/science.1070821

    CrossRef Google Scholar

    [14] Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography[J]. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom, 1996, 14(6): 4129−4133. doi: 10.1116/1.588605

    CrossRef Google Scholar

    [15] Xia Y N, Whitesides G M. Soft lithography[J]. Annu Rev Mater Sci, 1998, 28(1): 153−184. doi: 10.1146/annurev.matsci.28.1.153

    CrossRef Google Scholar

    [16] Yong J L, Yang Q, Guo C L, et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Adv, 2019, 9(22): 12470−12495. doi: 10.1039/C8RA10673H

    CrossRef Google Scholar

    [17] Zhang C Y, Zhou W, Geng D, et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures[J]. Opto-Electron Adv, 2021, 4(4): 04200061. doi: 10.29026/oea.2021.200061

    CrossRef Google Scholar

    [18] 张嘉琪, 高阳, 李淳, 等. 基于激光直写的柔性天线传感器研究[J]. 光电工程, 2022, 49(1): 210316. doi: 10.12086/oee.2022.210316

    CrossRef Google Scholar

    Zhang J Q, Gao Y, Li C, et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing[J]. Opto-Electron Eng, 2022, 49(1): 210316. doi: 10.12086/oee.2022.210316

    CrossRef Google Scholar

    [19] 汪延成, 刘佳薇, 盘何旻, 等. 聚合物基表面微结构的逐面式制造技术研究进展[J]. 机械工程学报, 2021, 57(21): 220−233. doi: 10.3901/JME.2021.21.220

    CrossRef Google Scholar

    Wang Y C, Liu J W, Pan H M, et al. Recent progress on manufacturing technologies in layer-by-layer mode for the fabrication of polymer-based surface microstructures[J]. J Mech Eng, 2021, 57(21): 220−233. doi: 10.3901/JME.2021.21.220

    CrossRef Google Scholar

    [20] Tran K T M, Gavitt T D, Farrell N J, et al. Transdermal microneedles for the programmable burst release of multiple vaccine payloads[J]. Nat Biomed Eng, 2021, 5(9): 998−1007. doi: 10.1038/s41551-020-00650-4

    CrossRef Google Scholar

    [21] 周伟, 刘伟, 邱清富, 等. 生物医用电极制造技术及应用研究进展[J]. 科学通报, 2015, 60(15): 1352−1360. doi: 10.1360/N972014-01093

    CrossRef Google Scholar

    Zhou W, Liu W, Qiu Q F, et al. Development, fabrication, and applications of biomedical electrodes[J]. Chin Sci Bull, 2015, 60(15): 1352−1360. doi: 10.1360/N972014-01093

    CrossRef Google Scholar

    [22] 史杨, 许兵, 吴东, 等. 飞秒激光直写技术制备功能化微流控芯片研究进展[J]. 中国激光, 2019, 46(10): 1000001. doi: 10.3788/CJL201946.1000001

    CrossRef Google Scholar

    Shi Y, Xu B, Wu D, et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chin J Lasers, 2019, 46(10): 1000001. doi: 10.3788/CJL201946.1000001

    CrossRef Google Scholar

    [23] Cao Y, Yuan X W, Wang X, et al. Synthesis and controlled release kinetics of pH-sensitive hollow polyaniline microspheres encapsuled with the corrosion inhibitor[J]. J Mol Liq, 2021, 342: 117497. doi: 10.1016/j.molliq.2021.117497

    CrossRef Google Scholar

    [24] Tang X, Wu C Y, Gan L, et al. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins[J]. Small, 2019, 15(10): 1804559. doi: 10.1002/smll.201804559

    CrossRef Google Scholar

    [25] 肖靖吁. 新型可穿戴式生物传感器的构建及其对汗液分析的研究[D]. 北京: 北京科技大学, 2022.

    Google Scholar

    Xiao J Y. Construction of novel wearable biosensors and their researches on sweat analysis[D]. Beijing: University of Science and Technology Beijing, 2022.

    Google Scholar

    [26] Xu G, Cheng C, Liu Z Y, et al. Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed In situ sweat analysis[J]. Adv Mater Technol, 2019, 4(7): 1800658. doi: 10.1002/admt.201800658

    CrossRef Google Scholar

    [27] Xu K C, Zhou R, Takei K, et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Adv Sci, 2019, 6(16): 1900925. doi: 10.1002/advs.201900925

    CrossRef Google Scholar

    [28] Wu R H, Ma L Y, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing[J]. Small, 2019, 15(31): 1901558. doi: 10.1002/smll.201901558

    CrossRef Google Scholar

    [29] Wang Y, Yang L, Shi X L, et al. Flexible thermoelectric materials and generators: challenges and innovations[J]. Adv Mater, 2019, 31(29): 1807916. doi: 10.1002/adma.201807916

    CrossRef Google Scholar

    [30] Park K C, Choi H J, Chang C H, et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 2012, 6(5): 3789−3799. doi: 10.1021/nn301112t

    CrossRef Google Scholar

    [31] Cai J X, Zhang C P, Liang C W, et al. Solution-processed large-area gold nanocheckerboard metasurfaces on flexible plastics for plasmonic biomolecular sensing[J]. Adv Opt Mater, 2019, 7(19): 1900516. doi: 10.1002/adom.201900516

    CrossRef Google Scholar

    [32] Chen L W, Zhou Y, Wu M X, et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes[J]. Opto-Electron Adv, 2018, 1(1): 170001. doi: 10.29026/oea.2018.170001

    CrossRef Google Scholar

    [33] Esmann M, Lamberti F R, Harouri A, et al. Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300 GHz[J]. Optica, 2019, 6(7): 854−859. doi: 10.1364/OPTICA.6.000854

    CrossRef Google Scholar

    [34] 廖嘉宁, 张东石, 李铸国. 飞秒激光制备柔性电子器件进展[J]. 光电工程, 2022, 49(2): 210388. doi: 10.12086/oee.2022.210388

    CrossRef Google Scholar

    Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics[J]. Opto-Electron Eng, 2022, 49(2): 210388. doi: 10.12086/oee.2022.210388

    CrossRef Google Scholar

    [35] Jiang H B, Zhang Y L, Liu Y, et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil[J]. Laser Photonics Rev, 2016, 10(3): 441−450. doi: 10.1002/lpor.201500256

    CrossRef Google Scholar

    [36] Zhou W, Liu W, Liu S Y, et al. Experimental investigation on surface wettability of copper-based dry bioelectrodes[J]. Sensors Actuat A Phys, 2016, 244: 237−242. doi: 10.1016/j.sna.2016.04.044

    CrossRef Google Scholar

    [37] Yong J L, Yang Q, Chen F, et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Appl Phys A, 2013, 111(1): 243−249. doi: 10.1007/s00339-013-7572-z

    CrossRef Google Scholar

    [38] Crawford T H R, Borowiec A, Haugen H K. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses[J]. Appl Phys A, 2005, 80(8): 1717−1724. doi: 10.1007/s00339-004-2941-2

    CrossRef Google Scholar

    [39] Li G Q, Fan H, Ren F F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. J Mater Chem A, 2016, 4(48): 18832−18840. doi: 10.1039/C6TA08231A

    CrossRef Google Scholar

    [40] Yan S G, Ren F F, Li C Z, et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Appl Phys Lett, 2018, 113(26): 261602. doi: 10.1063/1.5052566

    CrossRef Google Scholar

    [41] Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180

    CrossRef Google Scholar

    [42] Lu Y, Yu L D, Zhang Z, et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Adv, 2017, 7(18): 11170−11179. doi: 10.1039/C6RA28174E

    CrossRef Google Scholar

    [43] Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Adv Mater, 2014, 26(33): 5808−5814. doi: 10.1002/adma.201400474

    CrossRef Google Scholar

    [44] 何宇豪. 基于SU8胶制备立体结构柔性压阻传感器及其性能研究[D]. 成都: 电子科技大学, 2019.

    Google Scholar

    He Y H. The fabrication and capability researches about flexible piezoresistive sensor based on SU8 photoresist[D]. Chengdu: University of Electronic Science and Technology of China, 2019.

    Google Scholar

    [45] Li J, Wu T Y, Jiang H, et al. Ultrasensitive hierarchical piezoresistive pressure sensor for wide-range pressure detection[J]. Adv Intell Syst, 2021, 3(11): 2100070. doi: 10.1002/aisy.202100070

    CrossRef Google Scholar

    [46] Wu Y, Ji L F, Lin Z Y, et al. Substrate effect of laser surface sub-micro patterning by means of self-assembly SiO2 microsphere array[J]. Appl Surf Sci, 2015, 357: 832−837. doi: 10.1016/j.apsusc.2015.09.066

    CrossRef Google Scholar

    [47] Fang Y, Yong J L, Chen F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Adv Mater Interfaces, 2018, 5(6): 1701245. doi: 10.1002/admi.201701245

    CrossRef Google Scholar

    [48] Yong J L, Yang Q, Huo J L, et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (< 100 µm) for bubble/gas manipulation[J]. Int J Extreme Manuf, 2022, 4(1): 015002. doi: 10.1088/2631-7990/ac466f

    CrossRef Google Scholar

    [49] Li M J, Yang Q, Chen F, et al. Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication[J]. Adv Eng Mater, 2019, 21(3): 1800994. doi: 10.1002/adem.201800994

    CrossRef Google Scholar

    [50] Tian H, Shu Y, Wang X F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Sci Rep, 2015, 5: 8603. doi: 10.1038/srep08603

    CrossRef Google Scholar

    [51] Chen R, Luo T, Geng D, et al. Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface[J]. Carbon, 2022, 187: 35−46. doi: 10.1016/j.carbon.2021.10.064

    CrossRef Google Scholar

    [52] Zhu Y S, Cai H B, Ding H Y, et al. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6195−6200. doi: 10.1021/acsami.8b17085

    CrossRef Google Scholar

    [53] He M H, Wang Y N, Wang S R, et al. Laser-induced graphene enabled 1D fiber electronics[J]. Carbon, 2020, 168: 308−318. doi: 10.1016/j.carbon.2020.06.084

    CrossRef Google Scholar

    [54] Kim E, Lee Y, Ko C, et al. Tuning the optical and electrical properties of MoS2 by selective Ag photo-reduction[J]. Appl Phys Lett, 2018, 113(1): 013105. doi: 10.1063/1.5022705

    CrossRef Google Scholar

    [55] Szustakiewicz K, Stępak B, Antończak A, et al. Femtosecond laser-induced modification of PLLA/hydroxyapatite composite[J]. Polym Degrad Stab, 2018, 149: 152−161. doi: 10.1016/j.polymdegradstab.2018.01.015

    CrossRef Google Scholar

    [56] Fathi-Hafshejani P, Johnson H, Ahmadi Z, et al. Phase-selective and localized TiO2 coating on additive and wrought titanium by a direct laser surface modification approach[J]. ACS Omega, 2020, 5(27): 16744−16751. doi: 10.1021/acsomega.0c01671

    CrossRef Google Scholar

    [57] Yeo J, Hong S, Kim G, et al. Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design[J]. ACS Nano, 2015, 9(6): 6059−6068. doi: 10.1021/acsnano.5b01125

    CrossRef Google Scholar

    [58] Palaniappan V, Masihi S, Panahi M, et al. Laser-assisted fabrication of flexible micro-structured pressure sensor for low pressure applications[C]//2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 2019: 1–3.

    Google Scholar

    [59] Rana A, Roberge J P, Duchaine V. An improved soft dielectric for a highly sensitive capacitive tactile sensor[J]. IEEE Sens J, 2016, 16(22): 7853−7863. doi: 10.1109/JSEN.2016.2605134

    CrossRef Google Scholar

    [60] Dos Santos A, Pinela N, Alves P, et al. Piezoresistive E-skin sensors produced with laser engraved molds[J]. Adv Electron Mater, 2018, 4(9): 1800182. doi: 10.1002/aelm.201800182

    CrossRef Google Scholar

    [61] Dos Santos A, Pinela N, Alves P, et al. E-skin bimodal sensors for robotics and prosthesis using PDMS molds engraved by laser[J]. Sensors, 2019, 19(4): 899. doi: 10.3390/s19040899

    CrossRef Google Scholar

    [62] Li Z Y, Zhang B, Li K, et al. A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures via laser marking[J]. J Mater Chem C, 2020, 8(9): 3088−3096. doi: 10.1039/C9TC06352H

    CrossRef Google Scholar

    [63] Su Y, Zhang W, Chen S M, et al. Piezoresistive electronic-skin sensors produced with self-channeling laser microstructured silicon molds[J]. IEEE Trans Electron Devices, 2021, 68(2): 786−792. doi: 10.1109/TED.2020.3045962

    CrossRef Google Scholar

    [64] Kam D H, Kim J, Mazumder J. Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon[J]. J Manuf Process, 2018, 35: 99−106. doi: 10.1016/j.jmapro.2018.07.023

    CrossRef Google Scholar

    [65] Xu F L, Li X Y, Shi Y, et al. Recent developments for flexible pressure sensors: a review[J]. Micromachines, 2018, 9(11): 580. doi: 10.3390/mi9110580

    CrossRef Google Scholar

    [66] Geng D, Chen S Y, Chen R, et al. Tunable wide range and high sensitivity flexible pressure sensors with ordered multilevel microstructures[J]. Adv Mater Technol, 2022, 7(6): 2101031. doi: 10.1002/admt.202101031

    CrossRef Google Scholar

    [67] Gao Y, Lu C, Yu G H, et al. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J]. Nanotechnology, 2019, 30(32): 325502. doi: 10.1088/1361-6528/ab1a86

    CrossRef Google Scholar

    [68] Archard J F. Elastic deformation and the laws of friction[J]. Proc Roy Soc A Math Phys Sci, 1957, 243(1233): 190−205. doi: 10.1098/rspa.1957.0214

    CrossRef Google Scholar

    [69] Schallamach A. The load dependence of rubber friction[J]. Proc Phys Soc B, 1952, 65(9): 657−661. doi: 10.1088/0370-1301/65/9/301

    CrossRef Google Scholar

    [70] Shi J D, Wang L, Dai Z H, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small, 2018, 14(27): 1800819. doi: 10.1002/smll.201800819

    CrossRef Google Scholar

    [71] Zhang C Y, Chen R, Xiao C Q, et al. Laser direct writing of highly ordered two-level hierarchical microstructures for flexible piezoresistive sensor with enhanced sensitivity[J]. Adv Mater Interfaces, 2022, 9(1): 2101596. doi: 10.1002/admi.202101596

    CrossRef Google Scholar

    [72] Du Q F, Liu L L, Tang R T, et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Adv Mater Technol, 2021, 6(9): 2100122. doi: 10.1002/admt.202100122

    CrossRef Google Scholar

    [73] 朱芸松. 基于石墨烯的表皮压力传感器的设计、制备与建模[D]. 合肥: 中国科学技术大学, 2018.

    Google Scholar

    Zhu Y S. Design, fabrication and modeling of Graphene epidermal pressure sensor[D]. Hefei: University of Science and Technology of China, 2018.

    Google Scholar

    [74] Chen Z T, Zhao D N, Ma R, et al. Flexible temperature sensors based on carbon nanomaterials[J]. J Mater Chem B, 2021, 9(8): 1941−1964. doi: 10.1039/D0TB02451A

    CrossRef Google Scholar

    [75] Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat Nanotechnol, 2011, 6(8): 496−500. doi: 10.1038/nnano.2011.110

    CrossRef Google Scholar

    [76] Romero FJ, Ortiz-Gomez I, Salinas A, et al. Temperature sensing by laser reduced graphene oxide at different laser power levels[C]//2020 IEEE Sensors, 2020: 1–5.

    Google Scholar

    [77] Kazemzadeh R, Kim W S. Flexible temperature sensor with laser scribed Graphene oxide[C]//14th IEEE International Conference on Nanotechnology, 2014: 420–423.

    Google Scholar

    [78] Jung H, Lee H. Semi-transparent reduced graphene oxide temperature sensor on organic light-emitting diodes for fingerprint liveness detection of smartphone authentication[J]. Sensors Actuat A Phys, 2021, 331: 112876. doi: 10.1016/j.sna.2021.112876

    CrossRef Google Scholar

    [79] Lin J, Peng Z W, Liu Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nat Commun, 2014, 5(1): 5714. doi: 10.1038/ncomms6714

    CrossRef Google Scholar

    [80] Wan Z F, Chen X, Gu M. Laser scribed graphene for supercapacitors[J]. Opto-Electron Adv, 2021, 4(7): 200079. doi: 10.29026/oea.2021.200079

    CrossRef Google Scholar

    [81] Chhetry A, Sharma S, Barman S C, et al. Black phosphorus@laser-engraved graphene heterostructure-based temperature-strain hybridized sensor for electronic-skin applications[J]. Adv Funct Mater, 2021, 31(10): 2007661. doi: 10.1002/adfm.202007661

    CrossRef Google Scholar

    [82] Lu Y Y, Fujita Y, Honda S, et al. Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center[J]. Adv Healthcare Mater, 2021, 10(17): 2100103. doi: 10.1002/adhm.202100103

    CrossRef Google Scholar

    [83] Nakajima T, Tsuchiya T. Ultrathin highly flexible featherweight ceramic temperature sensor arrays[J]. ACS Appl Mater Interfaces, 2020, 12(32): 36600−36608. doi: 10.1021/acsami.0c08718

    CrossRef Google Scholar

    [84] Le T S D, Park S, An J N, et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics[J]. Adv Funct Mater, 2019, 29(33): 1902771. doi: 10.1002/adfm.201902771

    CrossRef Google Scholar

    [85] Niu X, Gao X H, Liu Y F, et al. Surface bioelectric dry electrodes: a review[J]. Measurement, 2021, 183: 109774. doi: 10.1016/j.measurement.2021.109774

    CrossRef Google Scholar

    [86] Fu Y L, Zhao J J, Dong Y, et al. Dry electrodes for human bioelectrical signal monitoring[J]. Sensors, 2020, 20(13): 3651. doi: 10.3390/s20133651

    CrossRef Google Scholar

    [87] Baek J Y, Kang K M, Kim H J, et al. Manufacturing process of polymeric microneedle sensors for mass production[J]. Micromachines, 2021, 12(11): 1364. doi: 10.3390/mi12111364

    CrossRef Google Scholar

    [88] Mania G K, Ponnusamy D, Tsuchiya K. Ultrafast fabrication of microneedle array for transdermal Ion detection[C]//2018 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2018: 1–3.

    Google Scholar

    [89] Zhou W, Ling W S, Liu W, et al. Laser direct micromilling of copper-based bioelectrode with surface microstructure array[J]. Opt Lasers Eng, 2015, 73: 7−15. doi: 10.1016/j.optlaseng.2015.03.011

    CrossRef Google Scholar

    [90] Zhou W, Liu S Y, Liu W, et al. Novel dry metal electrode with tilted microstructure fabricated with laser micromilling process[J]. Sensors Actuat A Phys, 2017, 264: 76−83. doi: 10.1016/j.sna.2017.07.028

    CrossRef Google Scholar

    [91] Pearton M, Saller V, Coulman S A, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression[J]. J Control Release, 2012, 160(3): 561−569. doi: 10.1016/j.jconrel.2012.04.005

    CrossRef Google Scholar

    [92] Sun Y W, Ren L, Jiang L L, et al. Fabrication of composite microneedle array electrode for temperature and bio-signal monitoring[J]. Sensors, 2018, 18(4): 1193. doi: 10.3390/s18041193

    CrossRef Google Scholar

  • Microstructure sensor is a kind of sensor with a 2D or 3D micron-scale structure prepared by advanced manufacturing technology. It is used as a sensitive part to enhance the transmission characteristics of physical, chemical, and biological signals to the environment, and convert the external signals into electrical signals. The microstructure is generally a regular or disordered structure, usually in the shape of microspheres, microcolumns, microcones, microgrooves and micropores. The microstructures with different shapes can realize the functions of puncture, pressure transmission, vibration transmission, drug transmission, bioelectric transmission, heat transmission, sound transmission, gas adsorption, and so on. In recent years, researchers from all over the world have gradually attached great importance to the research on the manufacturing technology of microstructure sensors. At present, researchers have proposed the MEMS manufacturing processes, such as reactive ion etching and chemical vapor deposition, to achieve mass manufacturing of high-precision microstructures on flexible polymer materials and rigid materials. In addition, some researchers have also proposed the manufacturing processes such as template method, self-assembly, nanoimprinting, and soft lithography to realize microstructure manufacturing. However, the above-mentioned manufacturing processes usually cannot prepare microstructure in one step, which has the problems of complex process, high production cost, limited processing materials, and unable to control the microstructure morphology. In contrast, laser manufacturing technology has the advantages of non-contact processing, no mask, customizable manufacturing, etc. By optimizing the parameters of laser process (such as laser power, scanning speed, filling mode and scanning path), it can achieve efficient and low-cost manufacturing of microstructures with different sizes and shapes. Therefore, using laser manufacturing technology to realize microstructure manufacturing and applying it to bioelectricity, temperature, and pressure sensors has become a research hotspot in microstructure sensor manufacturing technology. Laser manufacturing technology mainly includes laser ablation, laser direct writing, laser induction, laser-template processing, etc. Laser ablation is an auxiliary heating process based on the thermochemical and thermophysical effects of a laser beam, which melts the materials to be processed to realize structural forming. Laser direct writing is a manufacturing process that focuses high-energy photon beams on the materials to be processed to produce a photochemical process, and manufacturing the structures through material removal. Laser-induced modification is a manufacturing process to change the physical and chemical properties of the materials to be processed. Laser-template processing is a manufacturing process that uses a laser to produce microstructure molds on silicon, glass, polymer, and other substrates, and then uses soft lithography technology to reverse die the structures on the molds. Based on the interaction between the laser and materials, the induction, removal, and migration of materials to be processed can be realized. By adjusting the laser processing mode and processing parameters, the controlled manufacturing of the 2D or 3D microstructures or the controlled preparation of functional materials for the sensitive units can be realized, breaking through the limitations of efficiency and cost of traditional manufacturing methods for microstructures. In this paper, the types, functions, and manufacturing technologies of microstructures are summarized and classified. The preparation processes of laser manufacturing technology and other advanced manufacturing technologies of microstructures are summarized. The applications of microstructure sensors prepared by laser ablation, laser direct writing, laser induction, and laser-template processing technology in bioelectric sensing, temperature sensing, and pressure sensing are described in detail. Finally, the development trend of the laser manufacturing technology for microstructure sensors is summarized and prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(8605) PDF downloads(1116) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint