Citation: | Zhang C, Zou N M, Song J Y, et al. Digital signal processing and application of Φ-OTDR system[J]. Opto-Electron Eng, 2023, 50(2): 220088. doi: 10.12086/oee.2023.220088 |
[1] | 张旭苹. 全分布式光纤传感技术[M]. 北京: 科学出版社, 2013. Zhang X P. Fully Distributed Fiber Optic Sensing Technology[M]. Beijing: Science Press, 2013 |
[2] | 张旭苹, 丁哲文, 洪瑞, 等. 相位敏感光时域反射分布式光纤传感技术[J]. 光学学报, 2021, 41(1): 0106004. doi: 10.3788/AOS202141.0106004 Zhang X P, Ding Z W, Hong R, et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Opt Sin, 2021, 41(1): 0106004. doi: 10.3788/AOS202141.0106004 |
[3] | Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing: US07/737449[P]. 1993-03-16. |
[4] | An Y, Feng X, Li J, et al. Two-beam phase-sensitive optical time domain reflectometer based on Jones matrix modeling[J]. Opt Eng, 2013, 52(9): 094102. doi: 10.1117/1.OE.52.9.094102 |
[5] | He H J, Shao L Y, Li H C, et al. SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm[J]. IEEE Photonics J, 2017, 9(3): 6802610. doi: 10.1109/JPHOT.2017.2700894 |
[6] | He H J, Yan L S, Qian H, et al. Suppression of the interference fading in phase-sensitive OTDR with phase-shift transform[J]. J Lightw Technol, 2021, 39(1): 295−302. doi: 10.1109/JLT.2020.3023699 |
[7] | Shan Y Y, Ji W B, Wang Q, et al. Performance optimization for phase-sensitive OTDR sensing system based on multi-spatial resolution analysis[J]. Sensors, 2019, 19(1): 83. doi: 10.3390/s19010083 |
[8] | Zabihi M, Chen Y S, Zhou T, et al. Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies[J]. J Lightw Technol, 2019, 37(14): 3602−3610. doi: 10.1109/JLT.2019.2918353 |
[9] | Zhang Y X, Xu Y M, Shan Y Y, et al. Polarization dependence of phase-sensitive optical time-domain reflectometry and its suppression method based on orthogonal-state of polarization pulse pair[J]. Opt Eng, 2016, 55(7): 074109. doi: 10.1117/1.OE.55.7.074109 |
[10] | 单媛媛. 基于Φ-OTDR的分布式光纤振动传感系统关键技术研究[D]. 南京: 南京大学, 2019. Shan Y Y. The key technology research of distributed optical fiber vibration sensor based on Φ-OTDR[D]. Nanjing: Nanjing University, 2019. |
[11] | Awwad E, Dorize C, Guerrier S, et al. Detection-localization-identification of vibrations over long distance SSMF with coherent Δϕ -OTDR[J]. J Lightw Technol, 2020, 38(12): 3089−3095. doi: 10.1109/JLT.2020.2993167 |
[12] | LI H, Fan C Z, Liu T, et al. Time-slot multiplexing based bandwidth enhancement for fiber distributed acoustic sensing[J]. Sci China Inf Sci, 2022, 65(1): 119303. doi: 10.1007/s11432-020-3199-x |
[13] | Iida D, Toge K, Manabe T. High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR[C]//Proceedings of 2016 Optical Fiber Communications Conference and Exhibition, 2016. |
[14] | Li S, Qin Z G, Liu Z J, et al. Long-distance Φ-OTDR with a flexible frequency response based on time division multiplexing[J]. Opt Express, 2021, 29(21): 32833−32841. doi: 10.1364/OE.435883 |
[15] | Liu S Q, Yu F H, Hong R, et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electron Adv, 2022, 5(3): 200078. doi: 10.29026/oea.2022.200078 |
[16] | 吴慧娟, 刘欣雨, 饶云江. 基于Φ-OTDR的光纤分布式传感信号处理及应用[J]. 激光与光电子学进展, 2021, 58(13): 1306003. doi: 10.3788/LOP202158.1306003 Wu H J, Liu X Y, Rao Y J. Processing and application of fiber optic distributed sensing signal based on Φ-OTDR[J]. Laser Optoelectron Prog, 2021, 58(13): 1306003. doi: 10.3788/LOP202158.1306003 |
[17] | Wang B Z, Ba D X, Chu Q, et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering[J]. Opto-Electron Adv, 2020, 3(12): 200013. doi: 10.29026/oea.2020.200013 |
[18] | 胡洲畅. Φ-OTDR传感技术在铁路安全监测中的应用[D]. 合肥: 中国科学技术大学, https://doi.org/10.27517/d.cnki.gzkju.2021.001637. Hu Z C. Φ-OTDR sensing technology application in railway safety monitoring[D]. Hefei: University of Science and Technology of China, 2021. https://doi.org/10.27517/d.cnki.gzkju.2021.001637. |
[19] | 张丽娜, 任亚玲, 林融冰, 等. 分布式光纤声波传感器及其在天然地震学研究中的应用[J]. 地球物理学进展, 2020, 35(1): 65−71. doi: 10.6038/pg2020DD0384 Zhang L N, Ren Y L, Lin R B, et al. Distributed acoustic sensing system and its application for seismological studies[J]. Prog Geophys, 2020, 35(1): 65−71. doi: 10.6038/pg2020DD0384 |
[20] | 周小慧, 陈伟, 杨江峰, 等. DAS技术在油气地球物理中的应用综述[J]. 地球物理学进展, 2021, 36(1): 338−350. doi: 10.6038/pg2021DD0472 Zhou X H, Chen W, Yang J F, et al. Application review of DAS technology in oil and gas geophysics[J]. Prog Geophys, 2021, 36(1): 338−350. doi: 10.6038/pg2021DD0472 |
[21] | 王鹏飞, 董齐, 刘昕, 等. 基于Φ-OTDR的煤层气管线外界入侵振动检测系统[J]. 传感技术学报, 2019, 32(1): 144−149. doi: 10.3969/j.issn.1004-1699.2019.01.025 Wang P F, Dong Q, Liu X, et al. Coalbed methane transport pipeline intrusion detection system based on Φ-OTDR[J]. Chin J Sens Actuat, 2019, 32(1): 144−149. doi: 10.3969/j.issn.1004-1699.2019.01.025 |
[22] | 吴庥伟, 吴慧娟, 饶云江, 等. 基于多种小波分解方法综合判决的低误报率分布式光纤围栏入侵监测系统[J]. 光子学报, 2011, 40(11): 1692−1696. doi: 10.3788/gzxb20114011.1692 Wu X W, Wu H J, Rao Y J, et al. Low misstatement rate distributed optical fiber fence intrusion detection system by variety of wavelet decomposition method[J]. Acta Photonica Sin, 2011, 40(11): 1692−1696. doi: 10.3788/gzxb20114011.1692 |
[23] | Zhong X, Gao X C, Deng H X, et al. Pulse-width multiplexing ϕ-OTDR for nuisance-alarm rate reduction[J]. Sensors, 2018, 18(10): 3509. doi: 10.3390/s18103509 |
[24] | Yu X H, Zhou D L, Lu B, et al. Phase-sensitive optical time domain reflectometer for distributed fence-perimeter intrusion detection[J]. Proceedings of SPIE, 2015, 9679: 96790S. doi: 10.1117/12.2199685 |
[25] | 王照勇, 潘政清, 叶青, 等. 用于光纤围栏入侵告警的频谱分析快速模式识别[J]. 中国激光, 2015, 42(4): 0405010. doi: 10.3788/CJL201542.0405010 Wang Z Y, Pan Z Q, Ye Q, et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chin J Lasers, 2015, 42(4): 0405010. doi: 10.3788/CJL201542.0405010 |
[26] | 何祖源, 刘庆文. 光纤分布式声波传感器原理与应用[J]. 激光与光电子学进展, 2021, 58(13): 1306001. doi: 10.3788/LOP202158.1306001 He Z Y, Liu Q W. Principles and applications of optical fiber distributed acoustic sensors[J]. Laser Optoelectron Prog, 2021, 58(13): 1306001. doi: 10.3788/LOP202158.1306001 |
[27] | 马皓钰, 王夏霄, 马福, 等. Φ-OTDR型分布式光纤声波传感器研究进展[J]. 激光与光电子学进展, 2020, 57(13): 130005. doi: 10.3788/LOP57.130005 Ma H Y, Wang X X, Ma F, et al. Research progress of Φ-OTDR distributed optical fiber acoustic sensor[J]. Laser Optoelectron Prog, 2020, 57(13): 130005. doi: 10.3788/LOP57.130005 |
[28] | 施羿, 封皓, 曾周末. Φ-OTDR型分布式全光纤传感器研究进展[J]. 自动化仪表, 2017, 38(7): 70−74,79. doi: 10.16086/j.cnki.issn1000-0380.201707018 Shi Y, Feng H, Zeng Z M. Research progress of distributed optical fiber sensors based on Φ-OTDR structure[J]. Process Autom Instrum, 2017, 38(7): 70−74,79. doi: 10.16086/j.cnki.issn1000-0380.201707018 |
[29] | 文科, 王荣. 插卡式OTDR的设计与实现[J]. 飞通光电子技术, 2003, 3(2): 118−121. Wen K, Wang R. Design and implementation of plug-in OTDR[J]. Photon Technol, 2003, 3(2): 118−121. |
[30] | 李辉, 李蔚, 张慧娟. 分布式光纤传感检测在DSP下的设计与实现[EB/OL]. 北京: 中国科技论文在线. [2009-11-12]. http://www.paper.edu.cn/releasepaper/content/200911-353. |
[31] | 王刚, 周伟, 李进武. 分布式光纤传感系统的全数字信号处理[J]. 光通信技术, 2009, 33(3): 18−19. doi: 10.3969/j.issn.1002-5561.2009.03.006 Wang G, Zhou W, Li J W. Digital signal processing techniques in the practical distributed fiber sensor system[J]. Opt Commun Technol, 2009, 33(3): 18−19. doi: 10.3969/j.issn.1002-5561.2009.03.006 |
[32] | 吴晨平. 基于DSP的OTDR信号处理[D]. 成都: 电子科技大学, 2007. Wu C P. DSP-based OTDR signal processing[D]. Chengdu: University of Electronic Science and Technology of China, 2007. |
[33] | 张旭苹, 张益昕, 王峰, 等. 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法[J]. 物理学报, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707 Zhang X P, Zhang Y X, Wang F, et al. The mechanism and suppression methods of optical background noise in phase-sensitive optical time domain reflectometry[J]. Acta Phys Sin, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707 |
[34] | Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing[J]. Opt Lett, 2016, 41(24): 5648−5651. doi: 10.1364/OL.41.005648 |
[35] | Shang Y, Yang Y H, Wang C, et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering[J]. Measurement, 2016, 79: 222−227. doi: 10.1016/j.measurement.2015.09.042 |
[36] | 张宇昊. 基于分布式声场传感的地震勘探仪关键技术研究[D]. 南京: 南京大学, 2020. https://doi.org/10.27235/d.cnki.gnjiu.2020.000868. Zhang Y H. Research on key technologies of seismic exploration instrument based on distributed acoustic sensing[D]. Nanjing: Nanjing University, 2020. https://doi.org/10.27235/d.cnki.gnjiu.2020.000868. |
[37] | Furukawa S, Tanaka T, Koyamada Y, et al. High dynamic range coherent OTDR for fault location in optical amplifier systems[C]//Proceedings of the 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference, 1994. https://doi.org/10.1109/IMTC.1994.352115. |
[38] | Haykin S S. Communication Systems[M]. New York: John Wiley & Sons, 1978. |
[39] | Jiang F, Lu Z X, Cai F D, et al. Low computational cost distributed acoustic sensing using analog I/Q demodulation[J]. Sensors (Basel), 2019, 19(17): 3753. doi: 10.3390/s19173753 |
[40] | 马杰, 黎敏, 吕海飞, 等. 欠采样下外差干涉系统数字正交解调法[J]. 激光与光电子学进展, 2021, 58(23): 2306002. doi: 10.3788/LOP202158.2306002 Ma J, Li M, Lü H F, et al. Undersampling digital orthogonal demodulation method for heterodyne interference system[J]. Laser Optoelectron Prog, 2021, 58(23): 2306002. doi: 10.3788/LOP202158.2306002 |
[41] | Wang Z N, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Opt Express, 2016, 24(2): 853−858. doi: 10.1364/OE.24.000853 |
[42] | Wu Y Q, Gan J L, Li Q Y, et al. Distributed fiber voice sensor based on phase-sensitive optical time-domain reflectometry[J]. IEEE Photonics J, 2015, 7(6): 6803810. doi: 10.1109/JPHOT.2015.2499539 |
[43] | Fan X Y, Yang G Y, Wang S, et al. Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry[J]. J Lightw Technol, 2017, 35(16): 3281−3288. doi: 10.1109/JLT.2016.2604859 |
[44] | Yang G Y, Fan X Y, Wang S, et al. Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR[J]. IEEE Photonics J, 2016, 8(3): 6802412. doi: 10.1109/JPHOT.2016.2552820 |
[45] | 朱帆. 相位敏感型光时域反射传感系统性能增强研究[D]. 南京: 南京大学, 2015. Zhu F. Performance enhancement study of phase-sensitive optical time domain reflection sensing system[D]. Nanjing: Nanjing University, 2015. |
[46] | 陆存波. 基于Hilbert变换的单边带调制系统设计与实现[J]. 电子设计工程, 2016, 24(12): 138−140,145. doi: 10.3969/j.issn.1674-6236.2016.12.040 Lu C B. Based on Hilbert transformation single sideband modulation system design and realization[J]. Electron Des Eng, 2016, 24(12): 138−140,145. doi: 10.3969/j.issn.1674-6236.2016.12.040 |
[47] | 邹宁睦, 熊菲, 梁蕾, 等. 一种分布式光纤振动传感系统和解调方法: CN202110931428.8[P]. 2021-08-13. Zou N M, Xiong F, Liang L, et al. A distributed fiber optic vibration sensing system and demodulation method: CN202110931428.8[P]. 2021-08-13. |
[48] | 牛纪辉. 相位敏感型光时域反射传感系统的信号处理技术研究[D]. 南京: 南京大学, 2018. Niu J H. Research on signal processing technology of Φ-OTDR sensing system[D]. Nanjing: Nanjing University, 2018. |
[49] | 熊兴隆, 魏永兴, 张琬童, 等. 基于自适应噪声完备经验模态分解的Φ-OTDR信号去噪算法[J]. 半导体光电, 2018, 39(4): 600−606. doi: 10.16818/j.issn1001-5868.2018.04.031 Xiong X L, Wei Y X, Zhang W T, et al. De-noising algorithm of Φ-OTDR signal based on complete ensemble empirical mode decomposition with adaptive noise[J]. Semicond Optoelectron, 2018, 39(4): 600−606. doi: 10.16818/j.issn1001-5868.2018.04.031 |
[50] | Ju Z W, Yu Z J, Hou Q K, et al. Low-noise and high-sensitivity Φ-OTDR based on an optimized dual-pulse heterodyne detection scheme[J]. Appl Opt, 2020, 59(7): 1864−1870. doi: 10.1364/AO.383303 |
[51] | Zhang X P, Zheng Y Y, Zhang C, et al. A fading tolerant phase-sensitive optical time domain reflectometry based on phasing-locking structure[J]. Electronics, 2021, 10(5): 535. doi: 10.3390/electronics10050535 |
[52] | Healey P. Fading in heterodyne OTDR[J]. Electron Lett, 1984, 20(1): 30−32. doi: 10.1049/el:19840022 |
[53] | Liokumovich L B, Ushakov N A, Kotov O I, et al. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions[J]. J Lightw Technol, 2015, 33(17): 3660−3671. doi: 10.1109/JLT.2015.2449085 |
[54] | Park J, Lee W, Taylor H F. Fiber optic intrusion sensor with the configuration of an optical time-domain reflectometer using coherent interference of Rayleigh backscattering[J]. Proceedings of SPIE, 1998, 3555: 49−56. doi: 10.1117/12.318220 |
[55] | Zhou J, Pan Z Q, Ye Q, et al. Characteristics and explanations of interference fading of a ϕ -OTDR with a multi-frequency source[J]. J Lightw Technol, 2013, 31(17): 2947−2954. doi: 10.1109/JLT.2013.2275179 |
[56] | Wu H J, Xiao S K, Li X Y, et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR)[J]. J Lightw Technol, 2015, 33(15): 3156−3162. doi: 10.1109/JLT.2015.2421953 |
[57] | Pang F F, He M T, Liu H H, et al. A fading-discrimination method for distributed vibration sensor using coherent detection of φ-OTDR[J]. IEEE Photonics Technol Lett, 2016, 28(23): 2752−2755. doi: 10.1109/LPT.2016.2616023 |
[58] | Zhang X P, Wang Q, Xiong F, et al. Performance enhancement method for phase-sensitive optical time-domain reflectometer system based on suppression of fading induced false alarms[J]. Opt Eng, 2020, 59(4): 046101. doi: 10.1117/1.OE.59.4.046101 |
[59] | Hartog A A, Liokumovich L B, Ushakov N A, et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic distributed vibration sensing[C]//Proceedings of the 78th EAGE Conference and Exhibition 2016, 2016. https://doi.org/10.3997/2214-4609.201600685. |
[60] | Hartog A H, Liokumovich L B, Ushakov N A, et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic-distributed vibration sensing[J]. Geophys Prospect, 2018, 66(S1): 192−202. doi: 10.1111/1365-2478.12612 |
[61] | Zhang Y X, Liu J X, Xiong F, et al. A space-division multiplexing method for fading noise suppression in the Φ-OTDR system[J]. Sensors, 2021, 21(5): 1694. doi: 10.3390/s21051694 |
[62] | Juarez J C, Taylor H F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system[J]. Opt Lett, 2005, 30(24): 3284−3286. doi: 10.1364/OL.30.003284 |
[63] | Qin Z G, Chen L, Bao X Y. Wavelet denoising method for improving detection performance of distributed vibration sensor[J]. IEEE Photonics Technol Lett, 2012, 24(7): 542−544. doi: 10.1109/LPT.2011.2182643 |
[64] | 孙廷玺, 徐龙海, 王升, 等. 基于偏振分集技术的分布式光纤声波传感系统[J]. 光通信技术, 2020, 44(8): 5−9. doi: 10.13921/j.cnki.issn1002-5561.2020.08.002 Sun T X, Xu L H, Wang S, et al. Distributed optical fiber acoustic sensing system based on polarization diversity technology[J]. Opt Commun Technol, 2020, 44(8): 5−9. doi: 10.13921/j.cnki.issn1002-5561.2020.08.002 |
[65] | 张旭苹, 陈晓红, 梁蕾, 等. 长距离海缆在线监测改进型C-OTDR系统[J]. 光学学报, 2021, 41(13): 1306001. doi: 10.3788/AOS202141.1306001 Zhang X P, Chen X H, Liang L, et al. Enhanced C-OTDR-based online monitoring scheme for long-distance submarine cables[J]. Acta Opt Sin, 2021, 41(13): 1306001. doi: 10.3788/AOS202141.1306001 |
[66] | Dean T, Cuny T, Hartog A H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing[J]. Geophys Prospect, 2017, 65(1): 184−193. doi: 10.1111/1365-2478.12419 |
[67] | Zhang X P, Cao L, Shan Y Y, et al. Performance optimization for a phase-sensitive optical time-domain reflectometry based on multiscale matched filtering[J]. Opt Eng, 2019, 58(5): 056114. doi: 10.1117/1.OE.58.5.056114 |
[68] | 饶云江, 吴敏, 冉曾令, 等. 基于准分布式FBG传感器的光纤入侵报警系统[J]. 传感技术学报, 2007, 20(5): 998−1002. doi: 10.3969/j.issn.1004-1699.2007.05.011 Rao Y J, Wu M, Ran Z L, et al. A fiber-optic intrusion alarm system based on quasi-distributed fbg sensors[J]. Chin J Sens Actuators, 2007, 20(5): 998−1002. doi: 10.3969/j.issn.1004-1699.2007.05.011 |
[69] | 张颜, 娄淑琴, 梁生, 等. 基于多特征参量的φ-OTDR分布式光纤扰动传感系统模式识别研究[J]. 中国激光, 2015, 42(11): 1105005. doi: 10.3788/CJL201542.1105005 Zhang Y, Lou S Q, Liang S, et al. Study of pattern recognition based on multi-characteristic parameters for φ-OTDR distributed optical fiber sensing system[J]. Chin J Lasers, 2015, 42(11): 1105005. doi: 10.3788/CJL201542.1105005 |
[70] | Wu H J, Liu X R, Xiao Y, et al. A dynamic time sequence recognition and knowledge mining method based on the hidden markov models (HMMs) for pipeline safety monitoring with Φ-OTDR[J]. J Lightw Technol, 2019, 37(19): 4991−5000. doi: 10.1109/JLT.2019.2926745 |
[71] | Zhang Y, Wang S, Hu Y Z. Research on noise reduction of Φ-OTDR signal based on blind source separation algorithm[J]. IOP Conf Ser Earth Environ Sci, 2020, 440: 022074. doi: 10.1088/1755-1315/440/2/022074 |
[72] | Papp A, Wiesmeyr C, Litzenberger M, et al. A real-time algorithm for train position monitoring using optical time-domain reflectometry[C]//Proceedings of 2016 IEEE International Conference on Intelligent Rail Transportation, 2016. https://doi.org/10.1109/ICIRT.2016.7588715. |
[73] | 邹东伯, 刘海, 赵亮, 等. 分布式光纤振动传感信号识别的研究[J]. 激光技术, 2016, 40(1): 86−89. doi: 10.7510/jgjs.issn.1001-3806.2016.01.019 Zou D B, Liu H, Zhao L, et al. Research of signal recognition of distributed optical fiber vibration sensors[J]. Laser Technol, 2016, 40(1): 86−89. doi: 10.7510/jgjs.issn.1001-3806.2016.01.019 |
[74] | Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. J Light Technol, 2016, 34(19): 4445−4453. doi: 10.1109/JLT.2016.2542981 |
[75] | Hu Y Z, Meng Z, Ai X B, et al. Performance enhancement of the location and recognition of a Φ-OTDR system using CEEMDAN-KL and AMNBP[J]. Appl Sci, 2020, 10(9): 3047. doi: 10.3390/app10093047 |
[76] | Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing - a new tool for seismic applications[J]. First Break, 2014, 32(2). doi: 10.3997/1365-2397.2013034. |
[77] | Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Sci Rep, 2019, 9(1): 1328. doi: 10.1038/s41598-018-36675-8 |
[78] | 周桐. 分布式声场传感系统中高性能模式识别算法的研究[D]. 南京: 南京大学, 2020. https://doi.org/10.27235/d.cnki.gnjiu.2020.001052. Zhou T. Research on high performance pattern recognition algorithm in distributed fiber acoustic sensing system[D]. Nanjing: Nanjing University, 2020. https://doi.org/10.27235/d.cnki.gnjiu.2020.001052. |
[79] | 张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10−18,24. doi: 10.3969/j.issn.1673-4793.2016.02.002 Zhang R, Wang Y B. Research on machine learning with algorithm and development[J]. J Commun Univ China (Sci Technol), 2016, 23(2): 10−18,24. doi: 10.3969/j.issn.1673-4793.2016.02.002 |
[80] | 张俊楠, 娄淑琴, 梁生. 基于SVM算法的φ-OTDR分布式光纤扰动传感系统模式识别研究[J]. 红外与激光工程, 2017, 46(4): 0422003. doi: 10.3788/IRLA201746.0422003 Zhang J N, Lou S Q, Liang S. Study of pattern recognition based on SVM algorithm for φ-OTDR distributed optical fiber disturbance sensing system[J]. Infrared Laser Eng, 2017, 46(4): 0422003. doi: 10.3788/IRLA201746.0422003 |
[81] | Qian N. On the momentum term in gradient descent learning algorithms[J]. Neural Netw, 1999, 12(1): 145−151. doi: 10.1016/S0893-6080(98)00116-6 |
[82] | Xu H Y, Zhang Z, Zhang X W. Signal recognition basing on optical fiber vibration sensor[J]. Appl Mech Mater, 2013, 347–350: 743−747. doi: 10.4028/www.scientific.net/AMM.347-350.743 |
[83] | Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Min Knowl Disc, 1998, 2(2): 121−167. doi: 10.1023/A:1009715923555 |
[84] | Liu T, Li H, He T, et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electron Adv, 2021, 4(5): 200037. doi: 10.29026/oea.2021.200037 |
[85] | 谢鑫, 吴慧娟, 饶云江. 一种基于光纤布喇格光栅振动传感器的光纤围栏入侵监测系统及其模式识别[J]. 光子学报, 2014, 43(5): 0506005. doi: 10.3788/gzxb20144305.0506005 Xie X, Wu H J, Rao Y J. A fiber-optical perimeter intrusion detection system based on the fiber bragg grating vibration sensors and its identification method[J]. Acta Photonica Sin, 2014, 43(5): 0506005. doi: 10.3788/gzxb20144305.0506005 |
[86] | Wang Z D, Lou S Q, Wang X, et al. Multi-branch long short-time memory convolution neural network for event identification in fiber-optic distributed disturbance sensor based on φ-OTDR[J]. Infrared Phys Technol, 2020, 109: 103414. doi: 10.1016/j.infrared.2020.103414 |
[87] | Jiang F, Zhang Z H, Lu Z X, et al. High-fidelity acoustic signal enhancement for phase-OTDR using supervised learning[J]. Opt Express, 2021, 29(21): 33467−33480. doi: 10.1364/OE.439646 |
[88] | Fang G S, Xu T W, Feng S W, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. J Lightw Technol, 2015, 33(13): 2811−2816. doi: 10.1109/JLT.2015.2414416 |
[89] | 曲洪权, 夏雨, 毕福昆. 一种基于改进型SVM算法的光纤入侵信号识别研究[J]. 北方工业大学学报, 2017, 29(2): 33−38. doi: 10.3969/j.issn.1001-5477.2017.02.006 Qu H Q, Xia Y, Bi F K. An improved SVM method to recognize harmful intrusion signal for optical fiber pre-warning system[J]. J North China Univ Technol, 2017, 29(2): 33−38. doi: 10.3969/j.issn.1001-5477.2017.02.006 |
[90] | Wu H J, Chen J P, Liu X R, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. J Lightw Technol, 2019, 37(7): 4359−4366. doi: 10.1109/JLT.2019.2923839 |
[91] | Si Y, Wang Y Y, Wang L Y, et al. Multi-event classification for Φ-OTDR distributed optical fiber sensing system using deep learning and support vector machine[J]. Optik, 2020, 221: 165373. doi: 10.1016/j.ijleo.2020.165373 |
[92] | 刘涛, 冯学斌, 刘彬, 等. OPGW光纤余长控制及寿命影响分析[J]. 电力信息与通信技术, 2017, 15(9): 8−12. doi: 10.16543/j.2095-641x.electric.power.ict.2017.09.002 Liu T, Feng X B, Liu B, et al. Optical fiber excess length control and life impact analysis for OPGW[J]. Electric Power Inf Commun Technol, 2017, 15(9): 8−12. doi: 10.16543/j.2095-641x.electric.power.ict.2017.09.002 |
[93] | 张益昕, 陈可楠, 张旭苹, 等. 一种基于相位敏感型光时域反射系统的OPGW覆冰监测系统及方法: CN110686626B.[P]. 2021-03-19. Zhang Y X, Chen K N, Zhang X P, et al. An OPGW icing monitoring system and method based on phase-sensitive light time domain reflection system: CN110686626B[P]. 2021-03-19. |
[94] | Ding Z W, Zhang X P, Zou N M, et al. Phi-OTDR based on-line monitoring of overhead power transmission line[J]. J Lightw Technol, 2021, 39(15): 5163−5169. doi: 10.1109/JLT.2021.3078747 |
[95] | Ding Z W, Zou N M, Zhang C, et al. Self-optimized vibration localization based on distributed acoustic sensing and existing underground optical cables[J]. J Lightw Technol, 2022, 40(3): 844−854. doi: 10.1109/JLT.2021.3122738 |
[96] | Kundu T. Acoustic source localization[J]. Ultrasonics, 2014, 54(1): 25−38. doi: 10.1016/j.ultras.2013.06.009 |
[97] | Li X Y, Deng Z D, Rauchenstein L T, et al. Contributed Review: source-localization algorithms and applications using time of arrival and time difference of arrival measurements[J]. Rev Sci Instrum, 2016, 87(4): 041502. doi: 10.1063/1.4947001 |
[98] | Patwari N, Ash J N, Kyperountas S, et al. Locating the nodes: cooperative localization in wireless sensor networks[J]. IEEE Signal Proc Mag, 2005, 22(4): 54−69. doi: 10.1109/MSP.2005.1458287 |
[99] | Yang K, An J P, Bu X Y, et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements[J]. IEEE Trans Veh Technol, 2010, 59(3): 1558−1562. doi: 10.1109/TVT.2009.2037509 |
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) sensing system has the characteristics of high dynamic response and high sensitivity, and has great application potential in the field of large-scale engineering structural health monitoring. The instrumentation level and engineering application of Φ-OTDR systems depend to a large extent on digital signal processing (DSP) technology. For the Φ-OTDR system, the tasks of digital signal processing mainly include three aspects. First, the demodulation of Rayleigh's backscattered light phase information should be completed accurately and efficiently. It is necessary to understand the relationship between the phase difference and the sound field signal. Then, it is necessary to reasonably set the core parameters of the Φ-OTDR system in the digital-to-analog conversion to obtain the RBS signal quickly and accurately. After that, it is necessary to select an appropriate demodulation method for demodulation. Second, all kinds of noise floor of the sensing system itself should be analyzed and suppressed. Since the noise floor of the sensing system itself is inevitable, analyzing and suppressing it is the key to improve the signal-to-noise ratio of the system. The drift of the laser center frequency, the local birefringence change of the fiber, and the nonlinear correspondence between the fiber strain and the interference intensity will all introduce corresponding noise to the system. Among the many types of noise, the coherent fading brought by the system will cause the system SNR to continue to deteriorate and randomly form detection blind spots; the polarization-related noise caused by the external environment will affect the Φ-OTDR system's ability to perceive multiple disturbance events. Third, reliable feature extraction and pattern recognition strategies should be quickly selected to improve the accuracy and intelligence of system reconstruction disturbance events. In engineering applications, various monitoring objects and time-varying background noise make it difficult to describe vibration events by accurate mathematical models. In particular, when Φ-OTDR is used in new scenarios, it needs to be able to quickly establish a corresponding analysis model based on industry knowledge, and minimize the degree of manual participation in it. Therefore, efficient and reliable object feature extraction methods, pattern recognition algorithms, and machine learning strategies are urgently needed. In view of the above problems, this paper summarizes the main digital signal processing methods and technologies of the Φ-OTDR system in recent years in the digitization of optoelectronic signals, the demodulation of phase information, the suppression of system noise, and the pattern recognition of detected objects. Two application cases of transmission line condition monitoring and buried cable breakage early warning illustrate the digital signal processing skills in the design of engineering application schemes.
Influence of an external sound field on the optical fiberl fiber
Hilbert transform demodulation process
IQ demodulation flow chart
Relationship between sampling period and sampling point
Icing diagram of overhead power transmission line
Sag model of overhead transmission line
(a) Comparison between measured value and estimated value of sag; (b) Displacement of relative equilibrium position at the lowest point of overhead transmission line during vibration; (c) Ice thickness estimation
Accident site of external damage of buried cable
Schematic diagram of TDOA
Outfield experiment. (a) Two dimensional Gaussian distribution of confidence interval; (b) Contour plot of confidence interval
Position estimation error. (a) Single array; (b) Vertical orthogonal array