Citation: | Lv T Q, Wu Y C, Zhao X L. Light field image super-resolution network based on angular difference enhancement[J]. Opto-Electron Eng, 2023, 50(2): 220185. doi: 10.12086/oee.2023.220185 |
[1] | Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[J]. Comput Sci Tech Rep CSTR, 2005, 2(11): 1−11. |
[2] | Tao M W, Hadap S, Malik J, et al. Depth from combining defocus and correspondence using light-field Cameras[C]//Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, 2013: 673–680. https://doi.org/10.1109/ICCV.2013.89. |
[3] | Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, 1996: 31–42. https://doi.org/10.1145/237170.237199. |
[4] | Wang Y Q, Wang L G, Yang J G, et al. Spatial-angular interaction for light field image super-resolution[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 290–308. https://doi.org/10.1007/978-3-030-58592-1_18. |
[5] | Wang Y Q, Yang J G, Wang L G, et al. Light field image super-resolution using deformable convolution[J]. IEEE Trans Image Process, 2020, 30: 1057−1071. doi: 10.1109/TIP.2020.3042059 |
[6] | Mo Y, Wang Y Q, Xiao C, et al. Dense dual-attention network for light field image super-resolution[J]. IEEE Trans Circuits Syst Video Technol, 2022, 32(7): 4431−4443. doi: 10.1109/TCSVT.2021.3121679 |
[7] | Yeung H W F, Hou J H, Chen X M, et al. Light field spatial super-resolution using deep efficient spatial-angular separable convolution[J]. IEEE Trans Image Process, 2019, 28(5): 2319−2330. doi: 10.1109/TIP.2018.2885236 |
[8] | Zhang S, Lin Y F, Sheng H. Residual networks for light field image super-resolution[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 11046–11055. https://doi.org/10.1109/CVPR.2019.01130. |
[9] | Jin J, Hou J H, Chen J, et al. Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 2260−2269. https://doi.org/10.1109/CVPR42600.2020.00233. |
[10] | Liang Z Y, Wang Y Q, Wang L G, et al. Angular-flexible network for light field image super-resolution[J]. Electron Lett, 2021, 57(24): 921−924. doi: 10.1049/ell2.12312 |
[11] | 赵圆圆, 施圣贤. 融合多尺度特征的光场图像超分辨率方法[J]. 光电工程, 2020, 47(12): 200007. doi: 10.12086/oee.2020.200007 Zhao Y Y, Shi S X. Light-field image super-resolution based on multi-scale feature fusion[J]. Opto-Electron Eng, 2020, 47(12): 200007. doi: 10.12086/oee.2020.200007 |
[12] | Liu J, Tang J, Wu G S. Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of the European Conference on Computer Vision, Glasgow, 2020: 41–55. https://doi.org/10.1007/978-3-030-67070-2_2. |
[13] | Rerabek M, Ebrahimi T. New light field image dataset[C]//Proceedings of the 8th International Conference on Quality of Multimedia Experience, Lisbon, 2016. |
[14] | Honauer K, Johannsen O, Kondermann D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]//Proceedings of the 13th Asian Conference on Computer Vision, Cham, 2016: 19–34. https://doi.org/10.1007/978-3-319-54187-7_2. |
[15] | Wanner S, Meister S, Goldluecke B. Datasets and benchmarks for densely sampled 4D light fields[M]//Bronstein M, Favre J, Hormann K. Vision, Modeling and Visualization. Eurographics Association, 2013: 225–226. https://doi.org/10.2312/PE.VMV.VMV13.225-226. |
[16] | Le Pendu M, Jiang X R, Guillemot C. Light field inpainting propagation via low rank matrix completion[J]. IEEE Trans Image Process, 2018, 27(4): 1981−1993. doi: 10.1109/TIP.2018.2791864 |
[17] | Vaish V, Adams A. The (new) Stanford light field archive, computer graphics laboratory, Stanford University[EB/OL]. 2008. http://lightfield.stanford.edu |
[18] | Kingma D P, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, 2015. |
[19] | He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 International Conference on Computer Vision, Santiago, 2015: 1026–1034. https://doi.org/10.1109/ICCV.2015.123. |
[20] | Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, 2017: 136−144. https://doi.org/10.1109/CVPRW.2017.151. |
[21] | Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 294–310. https://doi.org/10.1007/978-3-030-01234-2_18. |
4D light field acquisition and rearrangement. (a) Biplanar representation model of light field; (b) Subaperture image array; (c) Macropixel array
Overall network structure diagram
Multi-branch residual block
ADA module details. (a) ADA module data processing process; (b) Feature collection; (c) Offset acquisition in feature collection; (d) Update the central view; (e) Feature distribution; (f) Offset acquisition in feature distribution
EADA module details. (a) EADA feature collection details; (b) EADA feature distribution details
RFD module simplification. (a) RFD module details; (b) SRFD module details
Visual contrast of the "Origami" scene with 2× SR
Visual contrast of the "Herbs" scene with 2× SR
Visual contrast of the "Bee" scene with 4× SR
Visual contrast of the "Lego Knights" scene with 4× SR