Citation: | Zuo J K, Pan M Y, Duan H G, et al. Review on new infrared stealth structural materials[J]. Opto-Electron Eng, 2023, 50(5): 220218. doi: 10.12086/oee.2023.220218 |
[1] | Bahret W F. The beginnings of stealth technology[J]. IEEE Trans Aerosp Electron Syst, 1993, 29(4): 1377−1385. doi: 10.1109/7.259548 |
[2] | Li W, Fan S H. Nanophotonic control of thermal radiation for energy applications [Invited][J]. Opt Express, 2018, 26(12): 15995−16021. doi: 10.1364/OE.26.015995 |
[3] | Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Phys Technol, 2011, 54(3): 136−154. doi: 10.1016/j.infrared.2010.12.003 |
[4] | Sun X C, Zhang T X, Li M. Moving point target detection using temporal variance filter in IR imagery[J]. Proc SPIE, 2007, 6786: 67861Z. doi: 10.1117/12.749185 |
[5] | Lu J H, Wang R F. The implementation method and the development tendency of infrared stealth technology[J]. Proc SPIE, 2015, 9674: 96741V. doi: 10.1117/12.2199702 |
[6] | Moghimi M J, Lin G Y, Jiang H R. Broadband and ultrathin infrared stealth sheets[J]. Adv Eng Mater, 2018, 20(11): 1800038. doi: 10.1002/adem.201800038 |
[7] | Kim J, Park C, Hahn J W. Metal–semiconductor–metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range[J]. Adv Opt Mater, 2022, 10(6): 2101930. doi: 10.1002/adom.202101930 |
[8] | 付伟. 红外隐身原理及其应用技术[J]. 红外与激光工程, 2002, 31(1): 88−93. doi: 10.3969/j.issn.1007-2276.2002.01.021 Fu W. Principle and application technology of IR stealth[J]. Infrared Laser Eng, 2002, 31(1): 88−93. doi: 10.3969/j.issn.1007-2276.2002.01.021 |
[9] | 陈翾, 袁江涛, 杨立. 地面目标红外特性及其隐身技术研究[J]. 工程热物理学报, 2007, 28(5): 844−846. doi: 10.3321/j.issn:0253-231X.2007.05.038 Chen H, Yuan J T, Yang L. The study on infrared characterization and stealthy technology of ground targets[J]. J Eng Thermophys, 2007, 28(5): 844−846. doi: 10.3321/j.issn:0253-231X.2007.05.038 |
[10] | Choe H S, Prabhakar R, Wehmeyer G, et al. Ion write microthermotics: programing thermal metamaterials at the microscale[J]. Nano Lett, 2019, 19(6): 3830−3837. doi: 10.1021/acs.nanolett.9b00984 |
[11] | Han T C, Bai X, Gao D L, et al. Experimental demonstration of a bilayer thermal cloak[J]. Phys Rev Lett, 2014, 112(5): 054302. doi: 10.1103/PhysRevLett.112.054302 |
[12] | Li Y, Bai X, Yang T Z, et al. Structured thermal surface for radiative camouflage[J]. Nat Commun, 2018, 9(1): 273. doi: 10.1038/s41467-017-02678-8 |
[13] | Zhou S L, Hu R, Luo X B. Thermal illusion with twinborn-like heat signatures[J]. Int J Heat Mass Transfer, 2018, 127: 607−613. doi: 10.1016/j.ijheatmasstransfer.2018.07.034 |
[14] | Hu R, Zhou S L, Li Y, et al. Illusion thermotics[J]. Adv Mater, 2018, 30(22): 1707237. doi: 10.1002/adma.201707237 |
[15] | Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901 |
[16] | Shen L, Zheng B, Liu Z Z, et al. Large-scale far-infrared invisibility cloak hiding object from thermal detection[J]. Adv Opt Mater, 2015, 3(12): 1738−1742. doi: 10.1002/adom.201500267 |
[17] | Baranov D G, Xiao Y Z, Nechepurenko I A, et al. Nanophotonic engineering of far-field thermal emitters[J]. Nat Mater, 2019, 18(9): 920−930. doi: 10.1038/s41563-019-0363-y |
[18] | Huang Z B, Zhou W C, Tang X F, et al. Effects of substrate roughness on infrared-emissivity characteristics of Au films deposited on Ni alloy[J]. Thin Solid Films, 2011, 519(10): 3100−3106. doi: 10.1016/j.tsf.2010.12.157 |
[19] | Yan X X, Xu G Y. Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity[J]. J Alloys Compd, 2010, 491(1–2): 649−653. doi: 10.1016/j.jallcom.2009.11.030 |
[20] | Huang Z B, Zhou W C, Tang X F. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy[J]. Appl Surf Sci, 2010, 256(7): 2025−2030. doi: 10.1016/j.apsusc.2009.09.042. |
[21] | Zhang W G, Xu G Y, Zhang J C, et al. Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal[J]. Opt Mater, 2014, 37: 343−346. doi: 10.1016/j.optmat.2014.06.023 |
[22] | Zhang J K, Shi J M, Zhao D P, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Phys Technol, 2017, 85: 62−65. doi: 10.1016/j.infrared.2017.05.018 |
[23] | Wang L, Yang Y, Tang X L, et al. Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design[J]. Opt Lett, 2021, 46(20): 5224−5227. doi: 10.1364/OL.441605 |
[24] | Zhu H Z, Li Q, Zheng C Q, et al. High-temperature infrared camouflage with efficient thermal management[J]. Light Sci Appl, 2020, 9: 60. doi: 10.1038/s41377-020-0300-5 |
[25] | Zhu H Z, Li Q, Tao C N, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nat Commun, 2021, 12(1): 1805. doi: 10.1038/s41467-021-22051-0 |
[26] | Peng L, Liu D Q, Cheng H F. Design and fabrication of the ultrathin metallic film based infrared selective radiator[J]. Sol Energy Mater Sol Cells, 2019, 193: 7−12. doi: 10.1016/j.solmat.2018.12.039 |
[27] | Peng L, Liu D Q, Cheng H F, et al. A multilayer film based selective thermal emitter for infrared stealth technology[J]. Adv Opt Mater, 2018, 6(23): 1801006. doi: 10.1002/adom.201801006 |
[28] | Zhang L, Wang J, Lou J, et al. A thermally robust and optically transparent infrared selective emitter for compatible camouflage[J]. J Mater Chem C, 2021, 9(42): 15018−15025. doi: 10.1039/D1TC02953C |
[29] | Huang Y J, Pu M B, Gao P, et al. Ultra-broadband large-scale infrared perfect absorber with optical transparency[J]. Appl Phys Express, 2017, 10(11): 112601. doi: 10.7567/APEX.10.112601 |
[30] | Roberts A S, Chirumamilla M, Wang D Y, et al. Ultra-thin titanium nitride films for refractory spectral selectivity [Invited][J]. Opt Mater Express, 2018, 8(12): 3717−3728. doi: 10.1364/OME.8.003717 |
[31] | Kim M K, Lee D S, Yang Y H, et al. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electron Adv, 2021, 4(5): 200006. doi: 10.29026/oea.2021.200006 |
[32] | Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in optical metamaterials[J]. Opt Lett, 2005, 30(24): 3356−3358. doi: 10.1364/OL.30.003356 |
[33] | Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788−792. doi: 10.1126/science.1096796 |
[34] | Zhai Y, Ma Y G, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062−1066. doi: 10.1126/science.aai7899 |
[35] | Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540−544. doi: 10.1038/nature13883 |
[36] | Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Lett, 2017, 17(8): 4902−4907. doi: 10.1021/acs.nanolett.7b01888 |
[37] | Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. J Opt A Pure Appl Opt, 2009, 11(7): 074009. doi: 10.1088/1464-4258/11/7/074009 |
[38] | Huang Y J, Pu M B, Zhang F, et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing[J]. Adv Opt Mater, 2019, 7(7): 1801480. doi: 10.1002/adom.201801480 |
[39] | Yang Y H, Jing L Q, Zheng B, et al. Full‐polarization 3D metasurface cloak with preserved amplitude and phase[J]. Adv Mater, 2016, 28(32): 6866−6871. doi: 10.1002/adma.201600625 |
[40] | Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Dordrecht: Springer, 2007. doi: 10.1007/978-1-4020-4333-8. |
[41] | Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824−830. doi: 10.1038/nature01937 |
[42] | Sakat E, Vincent G, Ghenuche P, et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Opt Lett, 2011, 36(16): 3054−3056. doi: 10.1364/OL.36.003054 |
[43] | Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters[J]. Appl Opt, 1993, 32(14): 2606−2613. doi: 10.1364/AO.32.002606 |
[44] | Luk'yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nat Mater, 2010, 9(9): 707−715. doi: 10.1038/nmat2810 |
[45] | Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale[J]. Nature, 2002, 418(6894): 159−162. doi: 10.1038/nature00899 |
[46] | Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009 |
[47] | Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686 |
[48] | Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713 |
[49] | Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics[J]. Appl Phys Lett, 2003, 82(3): 328−330. doi: 10.1063/1.1539300 |
[50] | Bomzon Z E, Biener G, Kleiner V, et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141 |
[51] | Shalabney A, Abdulhalim I. Sensitivity‐enhancement methods for surface Plasmon sensors[J]. Laser Photonics Rev, 2011, 5(4): 571−606. doi: 10.1002/lpor.201000009 |
[52] | Yang K, Yao X, Liu B W, et al. Metallic plasmonic array structures: principles, fabrications, properties, and applications[J]. Adv Mater, 2021, 33(50): 2007988. doi: 10.1002/adma.202007988 |
[53] | Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310−1314. doi: 10.1126/science.aac9411 |
[54] | Lee N, Kim T, Lim J S, et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation[J]. ACS Appl Mater Interfaces, 2019, 11(23): 21250−21257. doi: 10.1021/acsami.9b04478 |
[55] | Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Sci Rep, 2017, 7(1): 6740. doi: 10.1038/s41598-017-06749-0 |
[56] | Kim T, Bae J Y, Lee N, et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves[J]. Adv Funct Mater, 2019, 29(10): 1807319. doi: 10.1002/adfm.201807319 |
[57] | Pan M Y, Huang Y, Li Q, et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures[J]. Nano Energy, 2020, 69: 104449. doi: 10.1016/j.nanoen.2020.104449 |
[58] | Zhao L, Liu H, He Z H, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt, 2018, 57(8): 1757−1764. doi: 10.1364/AO.57.001757 |
[59] | Buhara E, Ghobadi A, Ozbay E. Multi-spectral infrared camouflage through excitation of plasmon-phonon polaritons in a visible-transparent hBN-ITO nanoantenna emitter[J]. Opt Lett, 2021, 46(19): 4996−4999. doi: 10.1364/OL.437933 |
[60] | Huang Y, Zhu Y N, Qin B, et al. Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage[J]. Nanophotonics, 2022, 11(16): 3613−3622. doi: 10.1515/nanoph-2022-0254 |
[61] | Lee N, Lim J S, Chang I, et al. Flexible assembled metamaterials for infrared and microwave camouflage[J]. Adv Opt Mater, 2022, 10(11): 2200448. doi: 10.1002/ADOM.202200448 |
[62] | Zhang Y P, Li T T, Chen Q, et al. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies[J]. Sci Rep, 2015, 5: 18463. doi: 10.1038/srep18463 |
[63] | Xu C L, Qu S B, Pang Y Q, et al. Metamaterial absorber for frequency selective thermal radiation[J]. Infrared Phys Technol, 2018, 88: 133−138. doi: 10.1016/j.infrared.2017.08.017 |
[64] | Zhao Y C, Fang F. Thermochromism frequency-selective emitter for infrared stealth application[J]. ACS Appl Electron Mater, 2021, 3(6): 2694−2702. doi: 10.1021/acsaelm.1c00277 |
[65] | Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Lett, 2012, 12(3): 1443−1447. doi: 10.1021/nl204118h |
[66] | Liang Q Q, Wang T S, Lu Z W, et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Adv Opt Mater, 2013, 1(1): 43−49. doi: 10.1002/adom.201200009 |
[67] | Ji D X, Song H M, Zeng X, et al. Broadband absorption engineering of hyperbolic metafilm patterns[J]. Sci Rep, 2014, 4: 4498. doi: 10.1038/srep04498 |
[68] | Liu G Q, Liu X S, Chen J, et al. Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters[J]. Sol Energy Mater Sol Cells, 2019, 190: 20−29. doi: 10.1016/j.solmat.2018.10.011 |
[69] | Liu Z Q, Liu G Q, Huang Z P, et al. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface[J]. Sol Energy Mater Sol Cells, 2018, 179: 346−352. doi: 10.1016/j.solmat.2017.12.033 |
[70] | Li Y K, Li W, Wang Y, et al. Refractory metamaterial microwave absorber with strong absorption insensitive to temperature[J]. Adv Opt Mater, 2018, 6(21): 1800691. doi: 10.1002/adom.201800691 |
[71] | Qin F, Chen X F, Yi Z, et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Sol Energy Mater Sol Cells, 2020, 211: 110535. doi: 10.1016/j.solmat.2020.110535 |
[72] | Li Y Y, Liu Z Q, Zhang H J, et al. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks[J]. Opt Express, 2019, 27(8): 11809−11818. doi: 10.1364/OE.27.011809 |
[73] | Wang Y Q, Ma X L, Li X, et al. Perfect electromagnetic and sound absorption via subwavelength holes array[J]. Opto-Electron Adv, 2018, 1(8): 180013. doi: 10.29026/oea.2018.180013 |
[74] | Yao Y, Zhou J, Liu Z Q, et al. Refractory materials and plasmonics based perfect absorbers[J]. Nanotechnology, 2021, 32(13): 132002. doi: 10.1088/1361-6528/abd275 |
[75] | Tang K C, Dong K C, Li J C, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 2021, 374(6574): 1504−1509. doi: 10.1126/science.abf7136 |
[76] | Hu R, Xi W, Liu Y D, et al. Thermal camouflaging metamaterials[J]. Mater Today, 2021, 45: 120−141. doi: 10.1016/j.mattod.2020.11.013 |
[77] | Xiao L, Ma H, Liu J K, et al. Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films[J]. Nano Lett, 2015, 15(12): 8365−8370. doi: 10.1021/acs.nanolett.5b04090 |
[78] | Chandra S, Franklin D, Cozart J, et al. Adaptive multispectral infrared camouflage[J]. ACS Photonics, 2018, 5(11): 4513−4519. doi: 10.1021/acsphotonics.8b00972 |
[79] | Tang K C, Wang X, Dong K C, et al. A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition[J]. Adv Mater, 2020, 32(36): 1907071. doi: 10.1038/s41377-018-0038-5 |
[80] | Qu Y R, Li Q, Cai L, et al. Thermal camouflage based on the phase-changing material GST[J]. Light Sci Appl, 2018, 7: 26. doi: 10.1002/adma.201907071 |
[81] | Inoue T, De Zoysa M, Asano T, et al. Realization of dynamic thermal emission control[J]. Nat Mater, 2014, 13(10): 928−931. doi: 10.1038/nmat4043 |
[82] | Nemati A, Wang Q, Ang N S S, et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 2021, 4(7): 200088. doi: 10.29026/oea.2021.200088 |
[83] | Salihoglu O, Uzlu H B, Yakar O, et al. Graphene-based adaptive thermal camouflage[J]. Nano Lett, 2018, 18(7): 4541−4548. doi: 10.1021/acs.nanolett.8b01746 |
[84] | Liu X Y, Padilla W J. Thermochromic infrared metamaterials[J]. Adv Mater, 2016, 28(5): 871−875. doi: 10.1002/adma.201504525 |
[85] | Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Adv Mater, 2017, 29(39): 1701275. doi: 10.1002/adma.201701275 |
[86] | Li M Y, Liu D Q, Cheng H F, et al. Manipulating metals for adaptive thermal camouflage[J]. Sci Adv, 2020, 6(22): eaba3494. doi: 10.1126/sciadv.aba3494 |
[87] | Mandal J, Jia MX, Overvig A, et al. Porous polymers with switchable optical transmittance for optical and thermal regulation[J]. Joule, 2019, 3(12): 3088−3099. doi: 10.1016/j.joule.2019.09.016 |
[88] | 张嘉琪, 高阳, 李淳, 等. 基于激光直写的柔性天线传感器研究[J]. 光电工程, 2022, 49(1): 210316. doi: 10.12086/oee.2022.210316 Zhang J Q, Gao Y, Li C, et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing[J]. Opto-Electron Eng, 2022, 49(1): 210316. doi: 10.12086/oee.2022.210316 |
[89] | 陈林森, 乔文, 叶燕, 等. 面向柔性光电子器件的微纳光制造关键技术与应用[J]. 光学学报, 2021, 41(8): 0823018. doi: 10.3788/AOS202141.0823018 Chen L S, Qiao W, Ye Y, et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Opt Sin, 2021, 41(8): 0823018. doi: 10.3788/AOS202141.0823018 |
[90] | 高晓蕾, 陈艺勤, 郑梦洁, 等. 大面积纳米压印技术及其器件应用[J]. 光学 精密工程, 2022, 30(5): 555−573. doi: 10.37188/OPE.20223005.0555 Gao X L, Chen Y Q, Zheng M J, et al. Large-area nanoimprint lithography: processes and device applications[J]. Opt Precis Eng, 2022, 30(5): 555−573. doi: 10.37188/OPE.20223005.0555 |
[91] | Chou S Y, Krauss P R, Renstrom P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Appl Phys Lett, 1995, 67(21): 3114−3116. doi: 10.1063/1.114851 |
[92] | Haisma J. Nanoimprint lithography combined with direct bonding: A possibility to construct quantum dots, wires, and planes in vertical cascade[J]. Appl Phys Lett, 2006, 89(24): 244105. doi: 10.1063/1.2403932 |
[93] | Ganesan R, Dumond J, Saifullah M S M, et al. Direct patterning of TiO2 using step-and-flash imprint lithography[J]. ACS Nano, 2012, 6(2): 1494−1502. doi: 10.1021/nn204405k |
[94] | Ji R, Hornung M, Verschuuren M A, et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectron Eng, 2010, 87(5–8): 963−967. doi: 10.1016/j.mee.2009.11.134 |
[95] | Verschuuren M A, Megens M, Ni Y F, et al. Large area nanoimprint by substrate conformal imprint lithography (SCIL)[J]. Adv Opt Technol, 2017, 6(3–4): 243−264. doi: 10.1515/aot-2017-0022 |
[96] | Ahn S H, Guo L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting[J]. ACS Nano, 2009, 3(8): 2304−2310. doi: 10.1021/nn9003633 |
[97] | Kim J G, Sim Y, Cho Y, et al. Large area pattern replication by nanoimprint lithography for LCD–TFT application[J]. Microelectron Eng, 2009, 86(12): 2427−2431. doi: 10.1016/j.mee.2009.05.006 |
[98] | 姜英杰. 柔性金属微纳结构转印机理及方法研究[D]. 苏州: 苏州大学, 2016. Jiang Y J. Fabrication of flexible metal micro/nano-surface structures by transfer printing and its technical methods[D]. Suzhou: Soochow University, 2016. (in Chinese) |
[99] | 尹周平, 黄永安, 陈蓉, 等. 柔性电子制造关键技术与应用[J]. 中国基础科学, 2020, 22(5): 21−34. doi: 10.3969/j.issn.1009-2412.2020.05.004 Yin Z P, Huang Y A, Chen R, et al. Key technologies and applications of flexible electronic manufacturing[J]. China Basic Sci, 2020, 22(5): 21−34. doi: 10.3969/j.issn.1009-2412.2020.05.004 |
[100] | Loo Y L, Willett R L, Baldwin K W, et al. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics[J]. Appl Phys Lett, 2002, 81(3): 562−564. doi: 10.1063/1.1493226 |
[101] | Zhou H L, Qin W Y, Yu Q M, et al. Transfer printing and its applications in flexible electronic devices[J]. Nanomaterials, 2019, 9(2): 283. doi: 10.3390/nano9020283 |
With the rapid development of military optoelectronic technology, the role of stealth technology in modern combat systems is becoming more and more important, in which stealth materials are essential to improve stealth performance. Infrared stealth is to tune the infrared radiation signal characteristics of the target to become the smallest difference from the background. The target will be invisible in the background and can not be identified through the infrared imaging equipment.
Starting from the background of infrared stealth technology, we introduce the classification of stealth technology and the progress of domestic and foreign infrared stealth materials from three aspects including single-band infrared stealth, multi-band compatible infrared stealth, and dynamic infrared stealth, and provide an in-depth analysis on the large-area flexible processing methods for micro-nano structures. Compared with single-band infrared stealth, multi-band compatible infrared stealth based on the photonic crystal, Fabry-Perot cavity structure, and metasurface, dynamic infrared stealth has higher freedom of spectral modulation. With the development of advanced micro-nano processing technology, metasurface is expected to become the first choice for new infrared stealth in the future due to its ultra-high freedom spectral modulation, ultra-thin subwavelength structures, etc. In addition, we have conducted an in-depth analysis of flexible processing methods for large areas of micro and nano structures.
Finally, based on the summary and reflection of the research work, the development of new infrared stealth materials will be further prospected. 1) High-strength direction development. In some stealth material application scenarios such as aircraft, vehicles, tanks, and other weaponry, the material will function in extreme environments. Therefore, the new infrared stealth materials have good mechanical properties, high-temperature resistance, corrosion resistance, impact resistance, etc. 2) Large-area direction development. In actual applications, the target to be stealthy is from centimeter-level to meter-level applications, so a large area of new infrared stealth materials is the inevitable trend of future development. 3) Flexible direction development. No matter the stealth target is equipment parts or clothing wear, achieving conformal stealth is a key part of stealth material development. 4) Intelligent direction development. Due to the continuous development and integration of multi-band detection technology and the harsh requirements of the actual environment, the realization of real-time dynamic multi-band intelligent stealth is a major demand for stealth technology.
Schematic diagram of the classification of stealth technologies[6-7]
Infrared stealth studies based on temperature modulation. (a) Structured thermal surfaces[12]; (b), (c) Visual obfuscation of virtual targets[13-14]; (d) Stealth cloak[15]; (e) Far-infrared unidirectional stealth cloak[16]; (f) Infrared stealth based on thermally insulating materials[17]
Infrared stealth research based on photonic crystal structures. (a) Ge/ZnS photonic crystals[21]; (b) Ge, ZnSe, Si photonic crystals[22]; (c) SiO2, TiO2, Ge alternating multilayer structures[23]; (d) Ge/ZnS photonic crystal structures[24]; (e) Multispectral compatible photonic crystal structures[25]
Infrared stealth research based on F-P cavity structures. (a) Infrared stealth selective emitter with Ag/Ge multilayer films [27]; (b) Composite four-layer structure with transparent conductive films of indium tin oxide and dielectric films of zinc sulfide [28]; (c) Alternating four-layer structure with photoresist and indium tin oxide [29]; (d) Si3N4-TiN-MgO-TiN four-layer structures[30]
Infrared stealth research based on metasurface structures. (a) Metasurface stealth carpet[53]; (b) Disc metasurface [54]; (c) Circular metasurface[55]; (d) Metasurface compatible with IR and microwave stealth[56]; (e) Metasurface compatible with visible, infrared, and laser stealth[57]
Comparison of three basic structures for multi-band infrared stealth[24-57]
Examples of combined phase change materials for dynamic modulation of stealth materials applications. (a) VO2, graphene, and carbon nanotube trilayer structure stealth device[77]; (b) Multilayer cavity-coupled IR absorber[78]; (c) Thin film structure of tungsten-doped vanadium dioxide[79]; (d) GST-Au two-layer structure[80]
(a) Complex pattern processed by 3D laser direct writing technology; (b) UV continuous frequency lithography optical path[89]; (c) 300 mm stencil prepared by EVG 770NT; (d) GL SR300300 mm large area master stencil[90]
Examples of nanoimprinting technique studies. (a) Grating with a width of 100 nm embossed by step flash embossing technique[93]; (b) UV-SCIL plate embossing[94]; (c) Sub-10 nm resolution achieved on wafer-level area[95]
Roll-to-roll embossing technology. (a) Roll-to-roll embossing technology[96]; (b) Roll-to-flat embossing technology[97]