Zuo J K, Pan M Y, Duan H G, et al. Review on new infrared stealth structural materials[J]. Opto-Electron Eng, 2023, 50(5): 220218. doi: 10.12086/oee.2023.220218
Citation: Zuo J K, Pan M Y, Duan H G, et al. Review on new infrared stealth structural materials[J]. Opto-Electron Eng, 2023, 50(5): 220218. doi: 10.12086/oee.2023.220218

Review on new infrared stealth structural materials

    Fund Project: National Key Research and Development Program (2021YFB3600500), National Natural Science Foundation of China (2005175,62105120), and Excellent Science and Technology Innovation Personnel Training Project in Shenzhen (RCBS20200714114855118)
More Information
  • With the rapid development of military optoelectronic technology, the role of stealth technology in modern combat systems is becoming more and more important, among which, stealth materials are crucial to improve stealth performance. We focus on infrared stealth materials and review the research progress of domestic and foreign infrared stealth materials from three aspects including single-band infrared stealth, multi-band compatible infrared stealth, and dynamic infrared stealth, and provide an in-depth analysis on the large-area flexible processing methods for micro-nano structures. The main problems of current infrared stealth materials are summarized and the future development trend is foreseen. In the future, to achieve high-performance stealth functions, new infrared stealth materials will further develop in the direction of high strength, large area, flexibility, and intelligence.
  • 加载中
  • [1] Bahret W F. The beginnings of stealth technology[J]. IEEE Trans Aerosp Electron Syst, 1993, 29(4): 1377−1385. doi: 10.1109/7.259548

    CrossRef Google Scholar

    [2] Li W, Fan S H. Nanophotonic control of thermal radiation for energy applications [Invited][J]. Opt Express, 2018, 26(12): 15995−16021. doi: 10.1364/OE.26.015995

    CrossRef Google Scholar

    [3] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Phys Technol, 2011, 54(3): 136−154. doi: 10.1016/j.infrared.2010.12.003

    CrossRef Google Scholar

    [4] Sun X C, Zhang T X, Li M. Moving point target detection using temporal variance filter in IR imagery[J]. Proc SPIE, 2007, 6786: 67861Z. doi: 10.1117/12.749185

    CrossRef Google Scholar

    [5] Lu J H, Wang R F. The implementation method and the development tendency of infrared stealth technology[J]. Proc SPIE, 2015, 9674: 96741V. doi: 10.1117/12.2199702

    CrossRef Google Scholar

    [6] Moghimi M J, Lin G Y, Jiang H R. Broadband and ultrathin infrared stealth sheets[J]. Adv Eng Mater, 2018, 20(11): 1800038. doi: 10.1002/adem.201800038

    CrossRef Google Scholar

    [7] Kim J, Park C, Hahn J W. Metal–semiconductor–metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range[J]. Adv Opt Mater, 2022, 10(6): 2101930. doi: 10.1002/adom.202101930

    CrossRef Google Scholar

    [8] 付伟. 红外隐身原理及其应用技术[J]. 红外与激光工程, 2002, 31(1): 88−93. doi: 10.3969/j.issn.1007-2276.2002.01.021

    CrossRef Google Scholar

    Fu W. Principle and application technology of IR stealth[J]. Infrared Laser Eng, 2002, 31(1): 88−93. doi: 10.3969/j.issn.1007-2276.2002.01.021

    CrossRef Google Scholar

    [9] 陈翾, 袁江涛, 杨立. 地面目标红外特性及其隐身技术研究[J]. 工程热物理学报, 2007, 28(5): 844−846. doi: 10.3321/j.issn:0253-231X.2007.05.038

    CrossRef Google Scholar

    Chen H, Yuan J T, Yang L. The study on infrared characterization and stealthy technology of ground targets[J]. J Eng Thermophys, 2007, 28(5): 844−846. doi: 10.3321/j.issn:0253-231X.2007.05.038

    CrossRef Google Scholar

    [10] Choe H S, Prabhakar R, Wehmeyer G, et al. Ion write microthermotics: programing thermal metamaterials at the microscale[J]. Nano Lett, 2019, 19(6): 3830−3837. doi: 10.1021/acs.nanolett.9b00984

    CrossRef Google Scholar

    [11] Han T C, Bai X, Gao D L, et al. Experimental demonstration of a bilayer thermal cloak[J]. Phys Rev Lett, 2014, 112(5): 054302. doi: 10.1103/PhysRevLett.112.054302

    CrossRef Google Scholar

    [12] Li Y, Bai X, Yang T Z, et al. Structured thermal surface for radiative camouflage[J]. Nat Commun, 2018, 9(1): 273. doi: 10.1038/s41467-017-02678-8

    CrossRef Google Scholar

    [13] Zhou S L, Hu R, Luo X B. Thermal illusion with twinborn-like heat signatures[J]. Int J Heat Mass Transfer, 2018, 127: 607−613. doi: 10.1016/j.ijheatmasstransfer.2018.07.034

    CrossRef Google Scholar

    [14] Hu R, Zhou S L, Li Y, et al. Illusion thermotics[J]. Adv Mater, 2018, 30(22): 1707237. doi: 10.1002/adma.201707237

    CrossRef Google Scholar

    [15] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901

    CrossRef Google Scholar

    [16] Shen L, Zheng B, Liu Z Z, et al. Large-scale far-infrared invisibility cloak hiding object from thermal detection[J]. Adv Opt Mater, 2015, 3(12): 1738−1742. doi: 10.1002/adom.201500267

    CrossRef Google Scholar

    [17] Baranov D G, Xiao Y Z, Nechepurenko I A, et al. Nanophotonic engineering of far-field thermal emitters[J]. Nat Mater, 2019, 18(9): 920−930. doi: 10.1038/s41563-019-0363-y

    CrossRef Google Scholar

    [18] Huang Z B, Zhou W C, Tang X F, et al. Effects of substrate roughness on infrared-emissivity characteristics of Au films deposited on Ni alloy[J]. Thin Solid Films, 2011, 519(10): 3100−3106. doi: 10.1016/j.tsf.2010.12.157

    CrossRef Google Scholar

    [19] Yan X X, Xu G Y. Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity[J]. J Alloys Compd, 2010, 491(1–2): 649−653. doi: 10.1016/j.jallcom.2009.11.030

    CrossRef Google Scholar

    [20] Huang Z B, Zhou W C, Tang X F. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy[J]. Appl Surf Sci, 2010, 256(7): 2025−2030. doi: 10.1016/j.apsusc.2009.09.042.

    CrossRef Google Scholar

    [21] Zhang W G, Xu G Y, Zhang J C, et al. Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal[J]. Opt Mater, 2014, 37: 343−346. doi: 10.1016/j.optmat.2014.06.023

    CrossRef Google Scholar

    [22] Zhang J K, Shi J M, Zhao D P, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Phys Technol, 2017, 85: 62−65. doi: 10.1016/j.infrared.2017.05.018

    CrossRef Google Scholar

    [23] Wang L, Yang Y, Tang X L, et al. Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design[J]. Opt Lett, 2021, 46(20): 5224−5227. doi: 10.1364/OL.441605

    CrossRef Google Scholar

    [24] Zhu H Z, Li Q, Zheng C Q, et al. High-temperature infrared camouflage with efficient thermal management[J]. Light Sci Appl, 2020, 9: 60. doi: 10.1038/s41377-020-0300-5

    CrossRef Google Scholar

    [25] Zhu H Z, Li Q, Tao C N, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nat Commun, 2021, 12(1): 1805. doi: 10.1038/s41467-021-22051-0

    CrossRef Google Scholar

    [26] Peng L, Liu D Q, Cheng H F. Design and fabrication of the ultrathin metallic film based infrared selective radiator[J]. Sol Energy Mater Sol Cells, 2019, 193: 7−12. doi: 10.1016/j.solmat.2018.12.039

    CrossRef Google Scholar

    [27] Peng L, Liu D Q, Cheng H F, et al. A multilayer film based selective thermal emitter for infrared stealth technology[J]. Adv Opt Mater, 2018, 6(23): 1801006. doi: 10.1002/adom.201801006

    CrossRef Google Scholar

    [28] Zhang L, Wang J, Lou J, et al. A thermally robust and optically transparent infrared selective emitter for compatible camouflage[J]. J Mater Chem C, 2021, 9(42): 15018−15025. doi: 10.1039/D1TC02953C

    CrossRef Google Scholar

    [29] Huang Y J, Pu M B, Gao P, et al. Ultra-broadband large-scale infrared perfect absorber with optical transparency[J]. Appl Phys Express, 2017, 10(11): 112601. doi: 10.7567/APEX.10.112601

    CrossRef Google Scholar

    [30] Roberts A S, Chirumamilla M, Wang D Y, et al. Ultra-thin titanium nitride films for refractory spectral selectivity [Invited][J]. Opt Mater Express, 2018, 8(12): 3717−3728. doi: 10.1364/OME.8.003717

    CrossRef Google Scholar

    [31] Kim M K, Lee D S, Yang Y H, et al. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electron Adv, 2021, 4(5): 200006. doi: 10.29026/oea.2021.200006

    CrossRef Google Scholar

    [32] Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in optical metamaterials[J]. Opt Lett, 2005, 30(24): 3356−3358. doi: 10.1364/OL.30.003356

    CrossRef Google Scholar

    [33] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788−792. doi: 10.1126/science.1096796

    CrossRef Google Scholar

    [34] Zhai Y, Ma Y G, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062−1066. doi: 10.1126/science.aai7899

    CrossRef Google Scholar

    [35] Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540−544. doi: 10.1038/nature13883

    CrossRef Google Scholar

    [36] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Lett, 2017, 17(8): 4902−4907. doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [37] Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. J Opt A Pure Appl Opt, 2009, 11(7): 074009. doi: 10.1088/1464-4258/11/7/074009

    CrossRef Google Scholar

    [38] Huang Y J, Pu M B, Zhang F, et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing[J]. Adv Opt Mater, 2019, 7(7): 1801480. doi: 10.1002/adom.201801480

    CrossRef Google Scholar

    [39] Yang Y H, Jing L Q, Zheng B, et al. Full‐polarization 3D metasurface cloak with preserved amplitude and phase[J]. Adv Mater, 2016, 28(32): 6866−6871. doi: 10.1002/adma.201600625

    CrossRef Google Scholar

    [40] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Dordrecht: Springer, 2007. doi: 10.1007/978-1-4020-4333-8.

    Google Scholar

    [41] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824−830. doi: 10.1038/nature01937

    CrossRef Google Scholar

    [42] Sakat E, Vincent G, Ghenuche P, et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Opt Lett, 2011, 36(16): 3054−3056. doi: 10.1364/OL.36.003054

    CrossRef Google Scholar

    [43] Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters[J]. Appl Opt, 1993, 32(14): 2606−2613. doi: 10.1364/AO.32.002606

    CrossRef Google Scholar

    [44] Luk'yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nat Mater, 2010, 9(9): 707−715. doi: 10.1038/nmat2810

    CrossRef Google Scholar

    [45] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale[J]. Nature, 2002, 418(6894): 159−162. doi: 10.1038/nature00899

    CrossRef Google Scholar

    [46] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [47] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [48] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [49] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics[J]. Appl Phys Lett, 2003, 82(3): 328−330. doi: 10.1063/1.1539300

    CrossRef Google Scholar

    [50] Bomzon Z E, Biener G, Kleiner V, et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [51] Shalabney A, Abdulhalim I. Sensitivity‐enhancement methods for surface Plasmon sensors[J]. Laser Photonics Rev, 2011, 5(4): 571−606. doi: 10.1002/lpor.201000009

    CrossRef Google Scholar

    [52] Yang K, Yao X, Liu B W, et al. Metallic plasmonic array structures: principles, fabrications, properties, and applications[J]. Adv Mater, 2021, 33(50): 2007988. doi: 10.1002/adma.202007988

    CrossRef Google Scholar

    [53] Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310−1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [54] Lee N, Kim T, Lim J S, et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation[J]. ACS Appl Mater Interfaces, 2019, 11(23): 21250−21257. doi: 10.1021/acsami.9b04478

    CrossRef Google Scholar

    [55] Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Sci Rep, 2017, 7(1): 6740. doi: 10.1038/s41598-017-06749-0

    CrossRef Google Scholar

    [56] Kim T, Bae J Y, Lee N, et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves[J]. Adv Funct Mater, 2019, 29(10): 1807319. doi: 10.1002/adfm.201807319

    CrossRef Google Scholar

    [57] Pan M Y, Huang Y, Li Q, et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures[J]. Nano Energy, 2020, 69: 104449. doi: 10.1016/j.nanoen.2020.104449

    CrossRef Google Scholar

    [58] Zhao L, Liu H, He Z H, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt, 2018, 57(8): 1757−1764. doi: 10.1364/AO.57.001757

    CrossRef Google Scholar

    [59] Buhara E, Ghobadi A, Ozbay E. Multi-spectral infrared camouflage through excitation of plasmon-phonon polaritons in a visible-transparent hBN-ITO nanoantenna emitter[J]. Opt Lett, 2021, 46(19): 4996−4999. doi: 10.1364/OL.437933

    CrossRef Google Scholar

    [60] Huang Y, Zhu Y N, Qin B, et al. Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage[J]. Nanophotonics, 2022, 11(16): 3613−3622. doi: 10.1515/nanoph-2022-0254

    CrossRef Google Scholar

    [61] Lee N, Lim J S, Chang I, et al. Flexible assembled metamaterials for infrared and microwave camouflage[J]. Adv Opt Mater, 2022, 10(11): 2200448. doi: 10.1002/ADOM.202200448

    CrossRef Google Scholar

    [62] Zhang Y P, Li T T, Chen Q, et al. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies[J]. Sci Rep, 2015, 5: 18463. doi: 10.1038/srep18463

    CrossRef Google Scholar

    [63] Xu C L, Qu S B, Pang Y Q, et al. Metamaterial absorber for frequency selective thermal radiation[J]. Infrared Phys Technol, 2018, 88: 133−138. doi: 10.1016/j.infrared.2017.08.017

    CrossRef Google Scholar

    [64] Zhao Y C, Fang F. Thermochromism frequency-selective emitter for infrared stealth application[J]. ACS Appl Electron Mater, 2021, 3(6): 2694−2702. doi: 10.1021/acsaelm.1c00277

    CrossRef Google Scholar

    [65] Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Lett, 2012, 12(3): 1443−1447. doi: 10.1021/nl204118h

    CrossRef Google Scholar

    [66] Liang Q Q, Wang T S, Lu Z W, et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Adv Opt Mater, 2013, 1(1): 43−49. doi: 10.1002/adom.201200009

    CrossRef Google Scholar

    [67] Ji D X, Song H M, Zeng X, et al. Broadband absorption engineering of hyperbolic metafilm patterns[J]. Sci Rep, 2014, 4: 4498. doi: 10.1038/srep04498

    CrossRef Google Scholar

    [68] Liu G Q, Liu X S, Chen J, et al. Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters[J]. Sol Energy Mater Sol Cells, 2019, 190: 20−29. doi: 10.1016/j.solmat.2018.10.011

    CrossRef Google Scholar

    [69] Liu Z Q, Liu G Q, Huang Z P, et al. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface[J]. Sol Energy Mater Sol Cells, 2018, 179: 346−352. doi: 10.1016/j.solmat.2017.12.033

    CrossRef Google Scholar

    [70] Li Y K, Li W, Wang Y, et al. Refractory metamaterial microwave absorber with strong absorption insensitive to temperature[J]. Adv Opt Mater, 2018, 6(21): 1800691. doi: 10.1002/adom.201800691

    CrossRef Google Scholar

    [71] Qin F, Chen X F, Yi Z, et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Sol Energy Mater Sol Cells, 2020, 211: 110535. doi: 10.1016/j.solmat.2020.110535

    CrossRef Google Scholar

    [72] Li Y Y, Liu Z Q, Zhang H J, et al. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks[J]. Opt Express, 2019, 27(8): 11809−11818. doi: 10.1364/OE.27.011809

    CrossRef Google Scholar

    [73] Wang Y Q, Ma X L, Li X, et al. Perfect electromagnetic and sound absorption via subwavelength holes array[J]. Opto-Electron Adv, 2018, 1(8): 180013. doi: 10.29026/oea.2018.180013

    CrossRef Google Scholar

    [74] Yao Y, Zhou J, Liu Z Q, et al. Refractory materials and plasmonics based perfect absorbers[J]. Nanotechnology, 2021, 32(13): 132002. doi: 10.1088/1361-6528/abd275

    CrossRef Google Scholar

    [75] Tang K C, Dong K C, Li J C, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 2021, 374(6574): 1504−1509. doi: 10.1126/science.abf7136

    CrossRef Google Scholar

    [76] Hu R, Xi W, Liu Y D, et al. Thermal camouflaging metamaterials[J]. Mater Today, 2021, 45: 120−141. doi: 10.1016/j.mattod.2020.11.013

    CrossRef Google Scholar

    [77] Xiao L, Ma H, Liu J K, et al. Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films[J]. Nano Lett, 2015, 15(12): 8365−8370. doi: 10.1021/acs.nanolett.5b04090

    CrossRef Google Scholar

    [78] Chandra S, Franklin D, Cozart J, et al. Adaptive multispectral infrared camouflage[J]. ACS Photonics, 2018, 5(11): 4513−4519. doi: 10.1021/acsphotonics.8b00972

    CrossRef Google Scholar

    [79] Tang K C, Wang X, Dong K C, et al. A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition[J]. Adv Mater, 2020, 32(36): 1907071. doi: 10.1038/s41377-018-0038-5

    CrossRef Google Scholar

    [80] Qu Y R, Li Q, Cai L, et al. Thermal camouflage based on the phase-changing material GST[J]. Light Sci Appl, 2018, 7: 26. doi: 10.1002/adma.201907071

    CrossRef Google Scholar

    [81] Inoue T, De Zoysa M, Asano T, et al. Realization of dynamic thermal emission control[J]. Nat Mater, 2014, 13(10): 928−931. doi: 10.1038/nmat4043

    CrossRef Google Scholar

    [82] Nemati A, Wang Q, Ang N S S, et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 2021, 4(7): 200088. doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [83] Salihoglu O, Uzlu H B, Yakar O, et al. Graphene-based adaptive thermal camouflage[J]. Nano Lett, 2018, 18(7): 4541−4548. doi: 10.1021/acs.nanolett.8b01746

    CrossRef Google Scholar

    [84] Liu X Y, Padilla W J. Thermochromic infrared metamaterials[J]. Adv Mater, 2016, 28(5): 871−875. doi: 10.1002/adma.201504525

    CrossRef Google Scholar

    [85] Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Adv Mater, 2017, 29(39): 1701275. doi: 10.1002/adma.201701275

    CrossRef Google Scholar

    [86] Li M Y, Liu D Q, Cheng H F, et al. Manipulating metals for adaptive thermal camouflage[J]. Sci Adv, 2020, 6(22): eaba3494. doi: 10.1126/sciadv.aba3494

    CrossRef Google Scholar

    [87] Mandal J, Jia MX, Overvig A, et al. Porous polymers with switchable optical transmittance for optical and thermal regulation[J]. Joule, 2019, 3(12): 3088−3099. doi: 10.1016/j.joule.2019.09.016

    CrossRef Google Scholar

    [88] 张嘉琪, 高阳, 李淳, 等. 基于激光直写的柔性天线传感器研究[J]. 光电工程, 2022, 49(1): 210316. doi: 10.12086/oee.2022.210316

    CrossRef Google Scholar

    Zhang J Q, Gao Y, Li C, et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing[J]. Opto-Electron Eng, 2022, 49(1): 210316. doi: 10.12086/oee.2022.210316

    CrossRef Google Scholar

    [89] 陈林森, 乔文, 叶燕, 等. 面向柔性光电子器件的微纳光制造关键技术与应用[J]. 光学学报, 2021, 41(8): 0823018. doi: 10.3788/AOS202141.0823018

    CrossRef Google Scholar

    Chen L S, Qiao W, Ye Y, et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Opt Sin, 2021, 41(8): 0823018. doi: 10.3788/AOS202141.0823018

    CrossRef Google Scholar

    [90] 高晓蕾, 陈艺勤, 郑梦洁, 等. 大面积纳米压印技术及其器件应用[J]. 光学 精密工程, 2022, 30(5): 555−573. doi: 10.37188/OPE.20223005.0555

    CrossRef Google Scholar

    Gao X L, Chen Y Q, Zheng M J, et al. Large-area nanoimprint lithography: processes and device applications[J]. Opt Precis Eng, 2022, 30(5): 555−573. doi: 10.37188/OPE.20223005.0555

    CrossRef Google Scholar

    [91] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Appl Phys Lett, 1995, 67(21): 3114−3116. doi: 10.1063/1.114851

    CrossRef Google Scholar

    [92] Haisma J. Nanoimprint lithography combined with direct bonding: A possibility to construct quantum dots, wires, and planes in vertical cascade[J]. Appl Phys Lett, 2006, 89(24): 244105. doi: 10.1063/1.2403932

    CrossRef Google Scholar

    [93] Ganesan R, Dumond J, Saifullah M S M, et al. Direct patterning of TiO2 using step-and-flash imprint lithography[J]. ACS Nano, 2012, 6(2): 1494−1502. doi: 10.1021/nn204405k

    CrossRef Google Scholar

    [94] Ji R, Hornung M, Verschuuren M A, et al. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectron Eng, 2010, 87(5–8): 963−967. doi: 10.1016/j.mee.2009.11.134

    CrossRef Google Scholar

    [95] Verschuuren M A, Megens M, Ni Y F, et al. Large area nanoimprint by substrate conformal imprint lithography (SCIL)[J]. Adv Opt Technol, 2017, 6(3–4): 243−264. doi: 10.1515/aot-2017-0022

    CrossRef Google Scholar

    [96] Ahn S H, Guo L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting[J]. ACS Nano, 2009, 3(8): 2304−2310. doi: 10.1021/nn9003633

    CrossRef Google Scholar

    [97] Kim J G, Sim Y, Cho Y, et al. Large area pattern replication by nanoimprint lithography for LCD–TFT application[J]. Microelectron Eng, 2009, 86(12): 2427−2431. doi: 10.1016/j.mee.2009.05.006

    CrossRef Google Scholar

    [98] 姜英杰. 柔性金属微纳结构转印机理及方法研究[D]. 苏州: 苏州大学, 2016.

    Google Scholar

    Jiang Y J. Fabrication of flexible metal micro/nano-surface structures by transfer printing and its technical methods[D]. Suzhou: Soochow University, 2016. (in Chinese)

    Google Scholar

    [99] 尹周平, 黄永安, 陈蓉, 等. 柔性电子制造关键技术与应用[J]. 中国基础科学, 2020, 22(5): 21−34. doi: 10.3969/j.issn.1009-2412.2020.05.004

    CrossRef Google Scholar

    Yin Z P, Huang Y A, Chen R, et al. Key technologies and applications of flexible electronic manufacturing[J]. China Basic Sci, 2020, 22(5): 21−34. doi: 10.3969/j.issn.1009-2412.2020.05.004

    CrossRef Google Scholar

    [100] Loo Y L, Willett R L, Baldwin K W, et al. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics[J]. Appl Phys Lett, 2002, 81(3): 562−564. doi: 10.1063/1.1493226

    CrossRef Google Scholar

    [101] Zhou H L, Qin W Y, Yu Q M, et al. Transfer printing and its applications in flexible electronic devices[J]. Nanomaterials, 2019, 9(2): 283. doi: 10.3390/nano9020283

    CrossRef Google Scholar

  • With the rapid development of military optoelectronic technology, the role of stealth technology in modern combat systems is becoming more and more important, in which stealth materials are essential to improve stealth performance. Infrared stealth is to tune the infrared radiation signal characteristics of the target to become the smallest difference from the background. The target will be invisible in the background and can not be identified through the infrared imaging equipment.

    Starting from the background of infrared stealth technology, we introduce the classification of stealth technology and the progress of domestic and foreign infrared stealth materials from three aspects including single-band infrared stealth, multi-band compatible infrared stealth, and dynamic infrared stealth, and provide an in-depth analysis on the large-area flexible processing methods for micro-nano structures. Compared with single-band infrared stealth, multi-band compatible infrared stealth based on the photonic crystal, Fabry-Perot cavity structure, and metasurface, dynamic infrared stealth has higher freedom of spectral modulation. With the development of advanced micro-nano processing technology, metasurface is expected to become the first choice for new infrared stealth in the future due to its ultra-high freedom spectral modulation, ultra-thin subwavelength structures, etc. In addition, we have conducted an in-depth analysis of flexible processing methods for large areas of micro and nano structures.

    Finally, based on the summary and reflection of the research work, the development of new infrared stealth materials will be further prospected. 1) High-strength direction development. In some stealth material application scenarios such as aircraft, vehicles, tanks, and other weaponry, the material will function in extreme environments. Therefore, the new infrared stealth materials have good mechanical properties, high-temperature resistance, corrosion resistance, impact resistance, etc. 2) Large-area direction development. In actual applications, the target to be stealthy is from centimeter-level to meter-level applications, so a large area of new infrared stealth materials is the inevitable trend of future development. 3) Flexible direction development. No matter the stealth target is equipment parts or clothing wear, achieving conformal stealth is a key part of stealth material development. 4) Intelligent direction development. Due to the continuous development and integration of multi-band detection technology and the harsh requirements of the actual environment, the realization of real-time dynamic multi-band intelligent stealth is a major demand for stealth technology.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint