Hu J, Tang Z Y, Lan X, et al. Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1[J]. Opto-Electron Eng, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284
Citation: Hu J, Tang Z Y, Lan X, et al. Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1[J]. Opto-Electron Eng, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284

Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1

    Fund Project: Project supported by National Natural Science Foundation of China (62105228), and Natural Science Foundation of Sichuan Province (2022NSFSC2000)
More Information
  • A versatile metasurface platform based on phase change materials (PCMs) is provided to realize dynamic switching between edge detection and imaging without the assistance of a 4f imaging system. The metasurface consists of a periodic arrangement of unit structures which consists of a Ge2Sb2Se4Te1(GSST) nanofin on a silicon substrate. The dynamically switchable performance results from the combination of the geometric phase and two independent propagation phases that are provided by the composed phase-change material meta-atoms in amorphous and crystalline states. The average cross-polarized transmission coefficients are 0.77 and 0.42 in the amorphous and crystalline states. In order to verify the feasibility of the design, simulation and theoretical calculation of the designed switchable metasurface are carried out in crystalline state and amorphous state respectively, which show excellent imaging and edge detection results. The proposed metasurface and its working principle have potential applications in biomedical imaging and defect detection.ect detection.
  • 加载中
  • [1] Kwon H, Sounas D, Cordaro A, et al. Nonlocal metasurfaces for optical signal processing[J]. Phys Rev Lett, 2018, 121(17): 173004. doi: 10.1103/PhysRevLett.121.173004

    CrossRef Google Scholar

    [2] Davis T J, Eftekhari F, Gómez D E, et al. Metasurfaces with asymmetric optical transfer functions for optical signal processing[J]. Phys Rev Lett, 2019, 123(1): 013901. doi: 10.1103/PhysRevLett.123.013901

    CrossRef Google Scholar

    [3] Solli D R, Jalali B. Analog optical computing[J]. Nat Photonics, 2015, 9(11): 704−706. doi: 10.1038/nphoton.2015.208

    CrossRef Google Scholar

    [4] Zhu T F, Lou Y J, Zhou Y H, et al. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection[J]. Phys Rev Appl, 2019, 11(3): 034043. doi: 10.1103/PhysRevApplied.11.034043

    CrossRef Google Scholar

    [5] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [6] Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces[J]. Nat Rev Mater, 2020, 5(8): 604−620. doi: 10.1038/s41578-020-0203-3

    CrossRef Google Scholar

    [7] Huang Y J, Xiao T X, Xie Z W, et al. Single-layered phase-change metasurfaces achieving efficient wavefront manipulation and reversible chiral transmission[J]. Opt Express, 2022, 30(2): 1337−1350. doi: 10.1364/OE.447545

    CrossRef Google Scholar

    [8] Huang Y J, Xiao T X, Xie Z W, et al. Multistate nonvolatile metamirrors with tunable optical chirality[J]. ACS Appl Mater Interfaces, 2021, 13(38): 45890−45897. doi: 10.1021/acsami.1c14204

    CrossRef Google Scholar

    [9] Huang Y J, Xiao T X, Xie Z W, et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation[J]. Adv Opt Mater, 2021, 9(5): 2001663. doi: 10.1002/adom.202001663

    CrossRef Google Scholar

    [10] Zhang Y X, Pu M B, Jin J J, et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 2022, 5(11): 220058. doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [11] Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [12] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [13] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [14] 蓝翔, 邓钦荣, 张汶婷, 等. 基于扭转悬链线结构的高效手性吸波器[J]. 光电工程, 2022, 49(10): 220157. doi: 10.12086/oee.2022.220157

    CrossRef Google Scholar

    Lan X, Deng Q R, Zhang W T, et al. Efficient chiral absorber based on twisted catenary structure[J]. Opto-Electron Eng, 2022, 49(10): 220157. doi: 10.12086/oee.2022.220157

    CrossRef Google Scholar

    [15] 杨睿, 于千茜, 潘一苇, 等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    [16] Huang Y J, Xiao T X, Chen S, et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electron Adv, 2023, 6: 220073. doi: 10.29026/oea.2023.220073

    CrossRef Google Scholar

    [17] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [18] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [19] Xie X, Liu K P, Pu M B, et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 2020, 9(10): 3209−3215. doi: 10.1515/nanoph-2019-0415

    CrossRef Google Scholar

    [20] Tang Z Y, Li L, Zhang H C, et al. Multifunctional Janus metasurfaces achieving arbitrary wavefront manipulation at dual frequency[J]. Mater Des, 2022, 223: 111264. doi: 10.1016/j.matdes.2022.111264

    CrossRef Google Scholar

    [21] 许可, 王星儿, 范旭浩, 等. 超表面全息术: 从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [22] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [23] Li Q T, Dong F L, Wang B, et al. Free-space optical beam tapping with an all-silica metasurface[J]. ACS Photonics, 2017, 4(10): 2544−2549. doi: 10.1021/acsphotonics.7b00812

    CrossRef Google Scholar

    [24] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220−226. doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [25] Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nat Nanotechnol, 2018, 13(3): 227−232. doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [26] Cai W S, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nat Photonics, 2007, 1(4): 224−227. doi: 10.1038/nphoton.2007.28

    CrossRef Google Scholar

    [27] Xie X, Li X, Pu M B, et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Adv Funct Mater, 2018, 28(14): 1706673. doi: 10.1002/adfm.201706673

    CrossRef Google Scholar

    [28] Zhou Y, Wu W H, Chen R, et al. Analog optical spatial differentiators based on dielectric metasurfaces[J]. Adv Opt Mater, 2020, 8(4): 1901523. doi: 10.1002/adom.201901523

    CrossRef Google Scholar

    [29] Cordaro A, Kwon H, Sounas D, et al. High-index dielectric metasurfaces performing mathematical operations[J]. Nano Lett, 2019, 19(12): 8418−8423. doi: 10.1021/acs.nanolett.9b02477

    CrossRef Google Scholar

    [30] Dong Z W, Si J N, Yu X Y, et al. Optical spatial differentiator based on subwavelength high-contrast gratings[J]. Appl Phys Lett, 2018, 112(18): 181102. doi: 10.1063/1.5026309

    CrossRef Google Scholar

    [31] Zhou Y, Zheng H Y, Kravchenko I I, et al. Flat optics for image differentiation[J]. Nat Photonics, 2020, 14(5): 316−323. doi: 10.1038/s41566-020-0591-3

    CrossRef Google Scholar

    [32] Wan L, Pan D P, Yang S F, et al. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces[J]. Opt Lett, 2020, 45(7): 2070−2073. doi: 10.1364/OL.386986

    CrossRef Google Scholar

    [33] Huo P C, Zhang C, Zhu W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Lett, 2020, 20(4): 2791−2798. doi: 10.1021/acs.nanolett.0c00471

    CrossRef Google Scholar

    [34] He Q, Zhang F, Pu M B, et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions[J]. Nanophotonics, 2021, 10(1): 741−748. doi: 10.1515/nanoph-2020-0366

    CrossRef Google Scholar

    [35] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [36] Chang C M, Chu C H, Tseng M L, et al. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films[J]. Opt Express, 2011, 19(10): 9492−9504. doi: 10.1364/OE.19.009492

    CrossRef Google Scholar

    [37] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Opt Express, 2013, 21(11): 13691−13698. doi: 10.1364/OE.21.013691

    CrossRef Google Scholar

    [38] Yamada N. Origin, secret, and application of the ideal phase-change material GeSbTe[J]. Phys Status Solidi, 2012, 249(10): 1837−1842. doi: 10.1002/pssb.201200618

    CrossRef Google Scholar

    [39] Loke D, Lee T H, Wang W J, et al. Breaking the speed limits of phase-change memory[J]. Science, 2012, 336(6088): 1566−1569. doi: 10.1126/science.1221561

    CrossRef Google Scholar

    [40] Michel A K U, Zalden P, Chigrin D N, et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses[J]. ACS Photonics, 2014, 1(9): 833−839. doi: 10.1021/ph500121d

    CrossRef Google Scholar

    [41] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 2016, 10(1): 60−65. doi: 10.1038/nphoton.2015.247

    CrossRef Google Scholar

    [42] Du K K, Li Q, Lyu Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 2017, 6(1): e16194. doi: 10.1038/lsa.2016.194

    CrossRef Google Scholar

    [43] Zhang Y F, Chou J B, Li J Y, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nat Commun, 2019, 10(1): 4279. doi: 10.1038/s41467-019-12196-4

    CrossRef Google Scholar

    [44] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [45] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, et al. Spin–orbit interactions of light[J]. Nat Photonics, 2015, 9(12): 796−808. doi: 10.1038/nphoton.2015.201

    CrossRef Google Scholar

    [46] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin‐orbit interactions in metasurfaces[J]. Opto-Electron Eng, 2017, 44(3): 319−325. doi: 10.3969/j.issn.1003-501X.2017.03.006

    CrossRef Google Scholar

    [47] Yang H, Xie Z W, He H R, et al. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface[J]. Opt Lett, 2021, 46(15): 3741−3744. doi: 10.1364/OL.428870

    CrossRef Google Scholar

    [48] Zhou J X, Qian H L, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proc Natl Acad Sci USA, 2019, 116(23): 11137−11140. doi: 10.1073/pnas.1820636116

    CrossRef Google Scholar

  • This paper is devoted to the research of switchable edge detection and imaging metasurface without a 4f system. Edge detection and imaging both are important parts of modern imaging processing, which are widely applied in the fields of robot vision, modern artificial intelligence, and medical imaging operation. The method of processing images based on mathematical operations usually has low operational speed and high-power consumption. Therefore, optical analog computation is suggested to operate image processing performs by manipulating optical signal carrying image information. Optical analog computation based on the traditional optical system needs bulky configurations which is improper in highly integrated modern optical systems. Therefore, this paper analyzes and designs the phase distribution which enable switchable edge detection and imaging and proved the feasibility of the design by operating simulation and theoretical calculation with the proposed metasurface. The switchable ability relies on the switchable photonic spin-orbit interactions (SOIs). Therefore, firstly this paper described and analyzed SOIs. And then we utilize two optical properties of GSST in crystalline and amorphous states to design eight unit cells which have different phases when GSST is in different states. In order to prove that the switchable SOIs can be realized by using the free combination of the proposed eight unit cells, the gradient metasurface consists of unit cells designed to perform symmetric photonic SOIs when GSST is in the amorphous state, resulting in symmetric refractive angles -17.1° and 17.1° for LCP and RCP incidence. While the designed gradient metasurface performs asymmetric photonic SOIs when GSST is in the crystalline state, resulting in refractive angles of 0° and 32° for LCP and RCP incidence. The simulated refractive angles are approximately-19.5°, 17.7° and 0°, 31.2° in the amorphous and crystalline state. The highly consistent results between simulation and theoretical calculation prove the feasibility of this design. Then the principle of imaging and edge detection is analyzed theoretically, and by analyzing and optimizing legitimately, designed the propagation phase at the crystalline state and orientation angle for the unit cells. Employing this design method, when GSST is in the amorphous state the phase of transmitted LCP light fulfills the focusing phase. When GSST is in the crystalline state, the transmitted wavefronts of LCP and RCP can match the phase distributions of edge detection. Further, in order to prove the feasibility of the designed metasurface, a metasurface model is created to operate edge detection and imaging in CST Microwave Studio. The edge imaging of the object and the object imaging in simulated results proved the feasibility of the designed metasurface. Finally, at the same time, the letters "S I C N U" and the sun and immortal birds are chosen as objects for calculating the imaging of complex objects theoretically under the above-mentioned phase distributions. The theoretic edge imaging and imaging of the letters "S I C N U" and the sun and immortal birds proved that designed two-phase distributions can realize edge detection and bright-field imaging well. To sum up, the metasurface designed in this paper can provide a kind of design without a 4f system to realize switchable edge detection and imaging.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2682) PDF downloads(690) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint