Zhe L, Hang Y, Wu H, et al. Self-phase modulation in integrated cadmium telluride polycrystalline waveguide[J]. Opto-Electron Eng, 2023, 50(2): 220313. doi: 10.12086/oee.2023.220313
Citation: Zhe L, Hang Y, Wu H, et al. Self-phase modulation in integrated cadmium telluride polycrystalline waveguide[J]. Opto-Electron Eng, 2023, 50(2): 220313. doi: 10.12086/oee.2023.220313

Self-phase modulation in integrated cadmium telluride polycrystalline waveguide

    Fund Project: National Natural Science Foundation of China (62075144, 62005187), Sichuan Outstanding Youth Science and Technology Talents (2022JDJQ0031), and Engineering Featured Team Fund of Sichuan University (2020SCUNG105)
More Information
  • The mid-infrared (MIR) wavelength coincides with various molecular resonances and spectroscopy. It is a universal way to identify chemical and biological substances. Thus, the MIR supercontinuum generation (SCG) is widely used in biomedicine, spectroscopy, and environmental science. Cadmium telluride (CdTe) has an ultra-broad transparent spectral range, from 0.86 µm to 25 µm, and one of the largest third-order nonlinear coefficients. It makes CdTe become an excellent candidate for long-wavelength MIR on-chip SCG. As an important material of solar cells, there is a well-established thin film growth technology for CdTe. We designed a CdTe integrated waveguide on a low-refractive-index CdS film with a silicon substrate. The simulation results solved by the nonlinear Schrödinger equation manifest that the MIR SCG covering 4.1 µm to 9.7 µm can be generated from a 1 cm CdTe waveguide pumped by a 5.5 µm femtosecond laser. We experimentally fabricated the waveguide via the lithography and wet-etching techniques. The spectral broadening based on self-phase modulation from the large-core CdTe integrated waveguide is demonstrated by a femtosecond laser at the central wavelength of 1030 nm with a pulse width of 250 fs. The numerical simulations match well with the experimental results. These results pave the way for long-wavelength mid-infrared light sources and provide abundant new opportunities for MIR micro photonics.
  • 加载中
  • [1] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M]. 6th ed. Hoboken: Wiley, 2009.

    Google Scholar

    [2] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nat Photonics, 2010, 4(8): 495−497. doi: 10.1038/nphoton.2010.171

    CrossRef Google Scholar

    [3] Hakala T, Suomalainen J, Kaasalainen S, et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning[J]. Opt Express, 2012, 20(7): 7119−7127. doi: 10.1364/OE.20.007119

    CrossRef Google Scholar

    [4] Takara H, Ohara T, Yamamoto T, et al. Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source[J]. Electron Lett, 2005, 41(5): 270−271. doi: 10.1049/el:20057011

    CrossRef Google Scholar

    [5] Corrigan P, Martini R, Whittaker E A, et al. Quantum cascade lasers and the Kruse model in free space optical communication[J]. Opt Express, 2009, 17(6): 4355−4359. doi: 10.1364/OE.17.004355

    CrossRef Google Scholar

    [6] Nakasyotani T, Toda H, Kuri T, et al. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source[J]. J Lightwave Technol, 2006, 24(1): 404−410. doi: 10.1109/JLT.2005.859854

    CrossRef Google Scholar

    [7] Petrov V. Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources[J]. Opt Mater, 2012, 34(3): 536−554. doi: 10.1016/j.optmat.2011.03.042

    CrossRef Google Scholar

    [8] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0–16 µm in a low-loss telluride single-mode fiber[J]. Laser Photonics Rev, 2017, 11(2): 1700005. doi: 10.1002/lpor.201700005

    CrossRef Google Scholar

    [9] Petersen C R, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nat Photonics, 2014, 8(11): 830−834. doi: 10.1038/nphoton.2014.213

    CrossRef Google Scholar

    [10] Yu Y, Gai X, Ma P, et al. Experimental demonstration of linearly polarized 2–10 µm supercontinuum generation in a chalcogenide rib waveguide[J]. Opt Lett, 2016, 41(5): 958−961. doi: 10.1364/OL.41.000958

    CrossRef Google Scholar

    [11] Wang P, Huang J P, Xie S R, et al. Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 µm femtosecond laser[J]. Photonics Res, 2021, 9(4): 630−636. doi: 10.1364/PRJ.415339

    CrossRef Google Scholar

    [12] Yu M J, Desiatov B, Okawachi Y, et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides[J]. Opt Lett, 2019, 44(5): 1222−1225. doi: 10.1364/OL.44.001222

    CrossRef Google Scholar

    [13] Iwakuni K, Okubo S, Tadanaga O, et al. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared[J]. Opt Lett, 2016, 41(17): 3980−3983. doi: 10.1364/OL.41.003980

    CrossRef Google Scholar

    [14] Hu Y T, Liang D, Beausoleil R G. An advanced III-V-on-silicon photonic integration platform[J]. Opto-Electron Adv, 2021, 4(9): 200094. doi: 10.29026/oea.2021.200094

    CrossRef Google Scholar

    [15] Guo H R, Herkommer C, Billat A, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[J]. Nat Photonics, 2018, 12(6): 330−335. doi: 10.1038/s41566-018-0144-1

    CrossRef Google Scholar

    [16] Nader N, Maser D L, Cruz F C, et al. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy[J]. APL Photonics, 2018, 3(3): 036102. doi: 10.1063/1.5006914

    CrossRef Google Scholar

    [17] Singh N, Hudson D D, Yu Y, et al. Midinfrared supercontinuum generation from 2 to 6 µm in a silicon nanowire[J]. Optica, 2015, 2(9): 797−802. doi: 10.1364/OPTICA.2.000797

    CrossRef Google Scholar

    [18] Sinobad M, Monat C, Davies B L, et al. Mid-infrared octave spanning supercontinuum generation to 8.5 µm in silicon-germanium waveguides[J]. Optica, 2018, 5(4): 360−366. doi: 10.1364/OPTICA.5.000360

    CrossRef Google Scholar

    [19] Della Torre A, Sinobad M, Armand R, et al. Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide[J]. APL Photonics, 2021, 6(1): 016102. doi: 10.1063/5.0033070

    CrossRef Google Scholar

    [20] Ballester M M, Lafforgue C, Frigerio J, et al. On-chip mid-infrared supercontinuum generation from 3 to 13 µm wavelength[J]. ACS Photonics, 2020, 7(12): 3423−3429. doi: 10.1021/acsphotonics.0c01232

    CrossRef Google Scholar

    [21] Palik E D. Handbook of Optical Constants of Solids[M]. San Diego: Academic Press, 1998.

    Google Scholar

    [22] Tatsuura S, Matsubara T, Mitsu H, et al. Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch[J]. Appl Phys Lett, 2005, 87(25): 251110. doi: 10.1063/1.2151256

    CrossRef Google Scholar

    [23] Sheik-Bahae M, Hagan D J, van Stryland E W. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption[J]. Phys Rev Lett, 1990, 65(1): 96−99. doi: 10.1103/PhysRevLett.65.96

    CrossRef Google Scholar

    [24] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nat Photonics, 2019, 13(3): 158−169. doi: 10.1038/s41566-019-0358-x

    CrossRef Google Scholar

    [25] Xin C G, Zhang J B, Xu P Z, et al. Self-phase modulation in single CdTe nanowires[J]. Opt Express, 2019, 27(22): 31800−31809. doi: 10.1364/OE.27.031800

    CrossRef Google Scholar

    [26] Long Z, Yang H, Li Y, et al. Cadmium telluride waveguide for coherent MIR supercontinuum generation covering 3.5–20 µm[J]. Opt Express, 2022, 30(2): 2265−2277. doi: 10.1364/OE.446801

    CrossRef Google Scholar

    [27] Paudel N R, Wieland K A, Compaan A D. Ultrathin CdS/CdTe solar cells by sputtering[J]. Solar Energy Mater Solar Cells, 2012, 105: 109−112. doi: 10.1016/j.solmat.2012.05.035

    CrossRef Google Scholar

    [28] Chenault D B, Chipman R A. Infrared birefringence spectra for cadmium sulfide and cadmium selenide[J]. Appl Opt, 1993, 32(22): 4223−4227. doi: 10.1364/AO.32.004223

    CrossRef Google Scholar

    [29] DeBell A G, Dereniak E L, Harvey J, et al. Cryogenic refractive indices and temperature coefficients of cadmium telluride from 6 µm to 22 µm[J]. Appl Opt, 1979, 18(18): 3114−3115. doi: 10.1364/AO.18.003114

    CrossRef Google Scholar

    [30] Marple D T F. Refractive index of ZnSe, ZnTe, and CdTe[J]. J Appl Phys, 1964, 35(3): 539−542. doi: 10.1063/1.1713411

    CrossRef Google Scholar

    [31] Edwards D F, Ochoa E. Infrared refractive index of silicon[J]. Appl Opt, 1980, 19(24): 4130−4131. doi: 10.1364/AO.19.004130

    CrossRef Google Scholar

    [32] Agrawal G P. Nonlinear Fiber Optics[M]. 5th ed. Amsterdam: Academic Press, 2013.

    Google Scholar

    [33] Kraft D, Thissen A, Broetz J, et al. Characterization of tellurium layers for back contact formation on close to technology treated CdTe surfaces[J]. J Appl Phys, 2003, 94(5): 3589−3598. doi: 10.1063/1.1597757

    CrossRef Google Scholar

    [34] Bradley J D B, Evans C C, Choy J T, et al. Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices[J]. Opt Express, 2012, 20(21): 23821−23831. doi: 10.1364/OE.20.023821

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2965) PDF downloads(645) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint