Xiao Y, Yang S S, Cheng L Y, et al. Research progress of solar-blind UV photodetectors based on amorphous gallium oxide[J]. Opto-Electron Eng, 2023, 50(6): 230005. doi: 10.12086/oee.2023.230005
Citation: Xiao Y, Yang S S, Cheng L Y, et al. Research progress of solar-blind UV photodetectors based on amorphous gallium oxide[J]. Opto-Electron Eng, 2023, 50(6): 230005. doi: 10.12086/oee.2023.230005

Research progress of solar-blind UV photodetectors based on amorphous gallium oxide

    Fund Project: National Natural Science Foundation of China (62174025)
More Information
  • The Solar-blind UV detection has wide application scenarios and unique market values in the civil and military fields, such as space security communication, ozone hole detection, missile attack warning and so on. Gallium oxide (Ga2O3) has an extremely wide band gap (4.4-5.3 eV), almost covering the entire solar-blind UV region, and is considered as one of the most promising materials for the preparation of solar-blind UV photodetectors. Compared with single crystal or epitaxy materials, amorphous gallium oxide (a-Ga2O3) has a lower deposition temperature, a relatively simple preparation process, and a much wider range of applicable substrates. Therefore, it has become a new research hot spot in the field of the Ga2O3 solar-blind UV detection in most recent years. In this paper, the basic characteristics and most common preparation methods of a-Ga2O3 are introduced firstly, and then the research progress and present situations of the a-Ga2O3-based solar-blind UV photodetector are introduced in details from the perspective of device structures. At present, a-Ga2O3 based solar-blind UV photodetectors are mainly divided into MSM, junction, TFT and array types. By the optimization of device structures, the photodetection performance has been significantly improved. MSM device is the most widely used because of its simple structure and high responsivity. By constructing Schottky junction or heterojunction, the junction-type devices own the characteristics of fast response speed, low dark current, and self-power supply. TFT devices can suppress the dark current, amplify the gain and improve the recovery speed by applying gate voltage. Array-type devices can be used for large-area imaging. Finally, the future development trends of the a-Ga2O3 solar-blind UV photodetector are summarized.
  • 加载中
  • [1] Xu J J, Zheng W, Huang F. Gallium oxide solar-blind ultraviolet photodetectors: a review[J]. J Mater Chem C, 2019, 7(29): 8753−8770. doi: 10.1039/C9TC02055A

    CrossRef Google Scholar

    [2] 徐国钧, 苏绍基. 紫外光电探测器的原理及其广泛应用[J]. 云南大学学报(自然科学版), 2001, 23(4): 275−278,282. doi: 10.3321/j.issn:0258-7971.2001.04.008

    CrossRef Google Scholar

    Xu G J, Su S J. The theory of ultravidet photodetector and extensive application[J]. J Yunnan Univ (Nat Sci Ed), 2001, 23(4): 275−278,282. doi: 10.3321/j.issn:0258-7971.2001.04.008

    CrossRef Google Scholar

    [3] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[J]. J Appl Phys, 1996, 79(10): 7433−7473. doi: 10.1063/1.362677

    CrossRef Google Scholar

    [4] Qin Y, Long S B, Dong H, et al. Review of deep ultraviolet photodetector based on gallium oxide[J]. Chin Phys B, 2019, 28(1): 018501. doi: 10.1088/1674-1056/28/1/018501

    CrossRef Google Scholar

    [5] Guo D Y, Su Y L, Shi H Z, et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction[J]. ACS Nano, 2018, 12(12): 12827−12835. doi: 10.1021/acsnano.8b07997

    CrossRef Google Scholar

    [6] Li Y B, Tokizono T, Liao M Y, et al. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection[J]. Adv Funct Mater, 2010, 20(22): 3972−3978. doi: 10.1002/adfm.201001140

    CrossRef Google Scholar

    [7] Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector[J]. Appl Phys Lett, 2017, 110(22): 221107. doi: 10.1063/1.4984904

    CrossRef Google Scholar

    [8] Chen M X, Zhao B, Hu G F, et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire[J]. Adv Funct Mater, 2018, 28(14): 1706379. doi: 10.1002/adfm.201706379

    CrossRef Google Scholar

    [9] Zhang W L, Çakıroğlu O, Al-Enizi A, et al. Solvent-free fabrication of broadband WS2 photodetectors on paper[J]. Opto-Electron Adv, 2023, 6: 220101. doi: 10.29026/oea.2023.220101

    CrossRef Google Scholar

    [10] Ohtsu M. History, current developments, and future directions of near-field optical science[J]. Opto-Electron Adv, 2020, 3(3): 190046. doi: 10.29026/oea.2020.190046

    CrossRef Google Scholar

    [11] Qian Y Z, Yang Z Y, Huang Y H, et al. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays[J]. Opto-Electron Sci, 2022, 1(12): 220021. doi: 10.29026/oes.2022.220021

    CrossRef Google Scholar

    [12] Min J H, Lee K, Chung T H, et al. Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers[J]. Opto-Electron Sci, 2022, 1(10): 220016. doi: 10.29026/oes.2022.220016

    CrossRef Google Scholar

    [13] Yalagala B P, Dahiya A S, Dahiya R. ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics[J]. Opto-Electron Adv, 2023, 6(2): 220020. doi: 10.29026/oea.2023.220020

    CrossRef Google Scholar

    [14] Chen Y R, Zhang Z W, Jiang H, et al. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD[J]. J Mater Chem C, 2018, 6(18): 4936−4942. doi: 10.1039/C8TC00755A

    CrossRef Google Scholar

    [15] Lu Y J, Lin C N, Shan C X. Optoelectronic diamond: growth, properties, and photodetection applications[J]. Adv Opt Mater, 2018, 6(20): 1800359. doi: 10.1002/adom.201800359

    CrossRef Google Scholar

    [16] Chen X, Liu K W, Wang X, et al. Performance enhancement of a ZnMgO film UV photodetector by HF solution treatment[J]. J Mater Chem C, 2017, 5(40): 10645−10651. doi: 10.1039/C7TC03352D

    CrossRef Google Scholar

    [17] Guo D Y, Wu Z P, Li P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Opt Mater Express, 2014, 4(5): 1067−1076. doi: 10.1364/OME.4.001067

    CrossRef Google Scholar

    [18] Kong W Y, Wu G A, Wang K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Adv Mater, 2016, 28(48): 10725−10731. doi: 10.1002/adma.201604049

    CrossRef Google Scholar

    [19] Luan S Z, Dong L P, Jia R X. Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures[J]. J Cryst Growth, 2019, 505: 74−81. doi: 10.1016/j.jcrysgro.2018.09.031

    CrossRef Google Scholar

    [20] Feng P, Zhang J Y, Li Q H, et al. Individual β-Ga2O3 nanowires as solar-blind photodetectors[J]. Appl Phys Lett, 2006, 88(15): 153107. doi: 10.1063/1.2193463

    CrossRef Google Scholar

    [21] Zou R J, Zhang Z Y, Liu Q, et al. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts[J]. Small, 2014, 10(9): 1848−1856. doi: 10.1002/smll.201302705

    CrossRef Google Scholar

    [22] Oshima T, Okuno T, Arai N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates[J]. Appl Phys Express, 2008, 1(1): 011202. doi: 10.1143/APEX.1.011202

    CrossRef Google Scholar

    [23] 侯爽, 刘庆, 邢志阳, 等. Sn掺杂对Ga2O3基日盲紫外探测器性能的影响研究[J]. 光电工程, 2019, 46(10): 190011. doi: 10.12086/oee.2019.190011

    CrossRef Google Scholar

    Hou S, Liu Q, Xing Z Y, et al. Effects of Sn doping on Ga2O3-based solar blind photodetectors[J]. Opto-Electron Eng, 2019, 46(10): 190011. doi: 10.12086/oee.2019.190011

    CrossRef Google Scholar

    [24] Suzuki R, Nakagomi S, Kokubun Y, et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing[J]. Appl Phys Lett, 2009, 94(22): 222102. doi: 10.1063/1.3147197

    CrossRef Google Scholar

    [25] Liu Z, Wang X, Liu Y Y, et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode[J]. J Mater Chem C, 2019, 7(44): 13920−13929. doi: 10.1039/C9TC04912F

    CrossRef Google Scholar

    [26] Liu Z, Li S, Yan Z Y, et al. Construction of a β-Ga2O3-based metal-oxide-semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications[J]. J Mater Chem C, 2020, 8(15): 5071−5081. doi: 10.1039/D0TC00100G

    CrossRef Google Scholar

    [27] Guo D Y, Zhao X L, Zhi Y S, et al. Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films[J]. Mater Lett, 2016, 164: 364−367. doi: 10.1016/j.matlet.2015.11.001

    CrossRef Google Scholar

    [28] Pavesi M, Fabbri F, Boschi F, et al. ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors[J]. Mater Chem Phys, 2018, 205: 502−507. doi: 10.1016/j.matchemphys.2017.11.023

    CrossRef Google Scholar

    [29] Teng Y, Song L X, Ponchel A, et al. Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection[J]. Adv Mater, 2014, 26(36): 6238−6243. doi: 10.1002/adma.201402047

    CrossRef Google Scholar

    [30] Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide[J]. ACS Photonics, 2017, 4(9): 2203−2211. doi: 10.1021/acsphotonics.7b00359

    CrossRef Google Scholar

    [31] Lee S H, Kim S B, Moon Y J, et al. High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films[J]. ACS Photonics, 2017, 4(11): 2937−2943. doi: 10.1021/acsphotonics.7b01054

    CrossRef Google Scholar

    [32] Cui S J, Mei Z X, Zhang Y H, et al. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates[J]. Adv Opt Mater, 2017, 5(19): 1700454. doi: 10.1002/adom.201700454

    CrossRef Google Scholar

    [33] Chen K Y, Hsu C C, Yu H C, et al. The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector[J]. IEEE Trans Electron Devices, 2018, 65(5): 1817−1822. doi: 10.1109/TED.2018.2817637

    CrossRef Google Scholar

    [34] Stepanov S I, Nikolaev V I, Bougrov V E, et al. Gallium oxide: properties and applications-a review[J]. Rev Adv Mater Sci, 2016, 44(1): 63−86.

    Google Scholar

    [35] Yu F P, Ou S L, Wuu D S. Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors[J]. Opt Mater Express, 2015, 5(5): 1240−1249. doi: 10.1364/OME.5.001240

    CrossRef Google Scholar

    [36] Wang Y H, Cui W J, Yu J, et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection[J]. ACS Appl Mater Interfaces, 2019, 11(49): 45922−45929. doi: 10.1021/acsami.9b17409

    CrossRef Google Scholar

    [37] Nieminen M, Niinistö L, Rauhala E. Growth of gallium oxide thin films from gallium acetylacetonate by atomic layer epitaxy[J]. J Mater Chem, 1996, 6(1): 27−31. doi: 10.1039/JM9960600027

    CrossRef Google Scholar

    [38] Kim N H, Kim H W, Chang S, et al. Amorphous gallium oxide nanowires synthesized by metalorganic chemical vapor deposition[J]. Mater Sci Eng B, 2004, 111(2–3): 131−134. doi: 10.1016/j.mseb.2004.04.002

    CrossRef Google Scholar

    [39] Zhao J L, Sun X W, Ryu H, et al. UV and visible electroluminescence from a Sn: Ga2O3/n+-Si heterojunction by metal–organic chemical vapor deposition[J]. IEEE Trans Electron Devices, 2011, 58(5): 1447−1451. doi: 10.1109/TED.2011.2112364

    CrossRef Google Scholar

    [40] Takiguchi Y, Miyajima S. Effect of post-deposition annealing on low temperature metalorganic chemical vapor deposited gallium oxide related materials[J]. J Cryst Growth, 2017, 468: 129−134. doi: 10.1016/j.jcrysgro.2016.11.005

    CrossRef Google Scholar

    [41] Kobayashi E, Boccard M, Jeangros N, et al. Amorphous gallium oxide grown by low-temperature PECVD[J]. J Vac Sci Technol A, 2018, 36(2): 021518. doi: 10.1116/1.5018800

    CrossRef Google Scholar

    [42] Zhang D, Du Z, Ma M H, et al. Enhanced performance of solar-blind ultraviolet photodetector based on Mg-doped amorphous gallium oxide film[J]. Vacuum, 2019, 159: 204−208. doi: 10.1016/j.vacuum.2018.10.025

    CrossRef Google Scholar

    [43] Guo D Y, Wu Z P, An Y H, et al. Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications[J]. Appl Phys Lett, 2015, 106(4): 042105. doi: 10.1063/1.4907174

    CrossRef Google Scholar

    [44] Shi Q, Wang Q R, Zhang D, et al. Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation[J]. J Lumin, 2018, 206: 53−58. doi: 10.1016/j.jlumin.2018.10.005

    CrossRef Google Scholar

    [45] Kalygina V M, Vishnikina V V, Zarubin A N, et al. Effect of annealing in argon on the properties of thermally deposited gallium-oxide films[J]. Semiconductors, 2013, 47(8): 1130−1136. doi: 10.1134/S1063782613080071

    CrossRef Google Scholar

    [46] Rao P, Kumar S. Influence of post-deposition annealing in air and vacuum on the properties of thermally evaporated gallium oxide films[J]. Superlattices Microstruct, 2014, 70: 117−130. doi: 10.1016/j.spmi.2014.03.009

    CrossRef Google Scholar

    [47] Yi C, Liang H W, Yang L, et al. Influence of N2 and O2 annealing treatment on the optical bandgap of polycrystalline Ga2O3: Cu films[J]. Mater Sci Semicond Process, 2013, 16(5): 1303−1307. doi: 10.1016/j.mssp.2013.03.003

    CrossRef Google Scholar

    [48] Cabello G, Lillo L, Caro C, et al. Evaluation on the optical properties of Ga2O3-x thin films co-doped with Tb3+ and transition metals (Mn2+, Cr3+) prepared by a photochemical route[J]. Ceram Int, 2013, 39(3): 2443−2450. doi: 10.1016/j.ceramint.2012.08.096

    CrossRef Google Scholar

    [49] Cabello G, Araneda A, Lillo L, et al. Application of photochemical method in the synthesis of Ga2O3-X thin films co-doped with terbium and europium[J]. Solid State Sciences, 2014, 27: 24−29. doi: 10.1016/j.solidstatesciences.2013.11.002

    CrossRef Google Scholar

    [50] Petitmangin A, Hébert C, Perrière J, et al. Metallic clusters in nonstoichiometric gallium oxide films[J]. J Appl Phys, 2011, 109(1): 013711. doi: 10.1063/1.3531536

    CrossRef Google Scholar

    [51] Hebert C, Petitmangin A, Perrière J, et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition[J]. Mater Chem Phys, 2012, 133(1): 135−139. doi: 10.1016/j.matchemphys.2011.12.078

    CrossRef Google Scholar

    [52] Kumar S S, Rubio E J, Noor-A-Alam M, et al. Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films[J]. J Phys Chem C, 2013, 117(8): 4194−4200. doi: 10.1021/jp311300e

    CrossRef Google Scholar

    [53] Ramana C V, Rubio E J, Barraza C D, et al. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films[J]. J Appl Phys, 2014, 115(4): 043508. doi: 10.1063/1.4862186

    CrossRef Google Scholar

    [54] Li X, Lu H L, Ma H P, et al. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition[J]. Curr Appl Phys, 2019, 19(2): 72−81. doi: 10.1016/j.cap.2018.11.013

    CrossRef Google Scholar

    [55] 韩祖银. 非晶氧化镓基光电晶体管和成像系统研究[D]. 北京: 中国科学院大学 (中国科学院物理研究所), 2021. https://doi.org/10.27604/d.cnki.gwlys.2021.000061.

    Google Scholar

    Han Z Y. Research on amorphous gallium oxide based phototransistor and imaging system[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2021. https://doi.org/10.27604/d.cnki.gwlys.2021.000061.

    Google Scholar

    [56] Zhang Y F, Chen X H, Xu Y, et al. Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies[J]. Chin Phys B, 2019, 28(2): 028501. doi: 10.1088/1674-1056/28/2/028501

    CrossRef Google Scholar

    [57] Han S, Huang X L, Fang M Z, et al. High-performance UV detectors based on room-temperature deposited amorphous Ga2O3 thin films by RF magnetron sputtering[J]. J Mater Chem C, 2019, 7(38): 11834−11844. doi: 10.1039/C9TC03613J

    CrossRef Google Scholar

    [58] Li Z, Xu Y, Zhang J Q, et al. Flexible solar-blind Ga2O3 ultraviolet photodetectors with high responsivity and photo-to-dark current ratio[J]. IEEE Photonics J, 2019, 11(6): 1−9. doi: 10.1109/jphot.2019.2946731

    CrossRef Google Scholar

    [59] Zhu W H, Xiong L X, Si J W, et al. Influence of deposition temperature on amorphous Ga2O3 solar-blind ultraviolet photodetector[J]. Semicond Sci Technol, 2020, 35(5): 055037. doi: 10.1088/1361-6641/ab6ac1

    CrossRef Google Scholar

    [60] Pei Y, Liang L Y, Wang X L, et al. Substrate-bias-aided preparation and properties of amorphous gallium oxide films and their deep-ultraviolet photodetectors[J]. Ceram Int, 2021, 47(22): 32138−32143. doi: 10.1016/j.ceramint.2021.08.105

    CrossRef Google Scholar

    [61] Yang Y, Liu W M, Huang T T, et al. Low Deposition temperature amorphous ALD-Ga2O3 thin films and decoration with mos2 multilayers toward flexible solar-blind photodetectors[J]. ACS Appl Mater Interfaces, 2021, 13(35): 41802−41809. doi: 10.1021/acsami.1c11692

    CrossRef Google Scholar

    [62] Zhang T, Guan D G, Liu N T, et al. Room temperature fabrication and post-annealing treatment of amorphous Ga2O3 photodetectors for deep-ultraviolet light detection[J]. Appl Phys Express, 2022, 15(2): 022007. doi: 10.35848/1882-0786/ac48d9

    CrossRef Google Scholar

    [63] Fang M Z, Zhao W G, Li F F, et al. Fast response solar-blind photodetector with a quasi-Zener tunneling effect based on amorphous in-doped Ga2O3 thin films[J]. Sensors, 2019, 20(1): 129. doi: 10.3390/s20010129

    CrossRef Google Scholar

    [64] Qu Q L, Liu Q, Chen L F, et al. Flexible fast responding solar-blind photodetectors based on (TmGa)2O3 films grown on mica[J]. Appl Phys Lett, 2022, 120(12): 122108. doi: 10.1063/5.0088714

    CrossRef Google Scholar

    [65] Kumar N, Arora K, Kumar M. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes[J]. J Phys D Appl Phys, 2019, 52(33): 335103. doi: 10.1088/1361-6463/ab236f

    CrossRef Google Scholar

    [66] 玄鑫淼, 王加恒, 毛彦琦, 等. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究[J]. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039

    CrossRef Google Scholar

    Xuan X M, Wang J H, Mao Y Q, et al. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate[J]. Acta Phys Sin, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039

    CrossRef Google Scholar

    [67] Xiao S Y, Deng Y, Chen Z Y, et al. Flexible and highly stable solar-blind photodetector based on room-temperature synthesis of amorphous Ga2O3 film[J]. J Phys D Appl Phys, 2020, 53(48): 484004. doi: 10.1088/1361-6463/abad64

    CrossRef Google Scholar

    [68] Wang S L, Wu C, Wu F M, et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices[J]. Sens Actuators A Phys, 2021, 330: 112870. doi: 10.1016/j.sna.2021.112870

    CrossRef Google Scholar

    [69] Xiong L X, Zhang L, Lv Q P, et al. Amorphous gallium oxide (a-Ga2O3)-based high-temperature bendable solar-blind ultraviolet photodetector[J]. Semicond Sci Technol, 2021, 36(4): 045010. doi: 10.1088/1361-6641/abe42c

    CrossRef Google Scholar

    [70] Wang Y H, Li H R, Cao J, et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction[J]. ACS Nano, 2021, 15(10): 16654−16663. doi: 10.1021/acsnano.1c06567

    CrossRef Google Scholar

    [71] Cao J, Chen L, Chen X, et al. Performance improvement of amorphous Ga2O3/P-Si deep ultraviolet photodetector by oxygen plasma treatment[J]. Crystals, 2021, 11(10): 1248. doi: 10.3390/cryst11101248

    CrossRef Google Scholar

    [72] Ni D W, Wang Y J, Li A S, et al. ALD oxygen vacancy-rich amorphous Ga2O3 on three-dimensional urchin-like ZnO arrays for high-performance self-powered solar-blind photodetectors[J]. Nanoscale, 2022, 14(8): 3159−3165. doi: 10.1039/D1NR08262K

    CrossRef Google Scholar

    [73] Wang Y H, Yang Z B, Li H R, et al. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47714−47720. doi: 10.1021/acsami.0c10259

    CrossRef Google Scholar

    [74] Qin Y, Long S B, He Q M, et al. Amorphous gallium oxide-based gate-tunable high-performance thin film phototransistor for solar-blind imaging[J]. Adv Electron Mater, 2019, 5(7): 1900389. doi: 10.1002/aelm.201900389

    CrossRef Google Scholar

    [75] Han Z Y, Liang H L, Huo W X, et al. Boosted UV photodetection performance in chemically etched amorphous Ga2O3 thin-film transistors[J]. Adv Opt Mater, 2020, 8(8): 1901833. doi: 10.1002/adom.201901833

    CrossRef Google Scholar

    [76] Xiao X, Liang L Y, Pei Y, et al. Solution-processed amorphous Ga2O3: CdO TFT-type deep-UV photodetectors[J]. Appl Phys Lett, 2020, 116(19): 192102. doi: 10.1063/5.0007617

    CrossRef Google Scholar

    [77] Xu Y, Cheng Y L, Li Z, et al. High-performance gate tunable solar blind ultraviolet phototransistors based on amorphous Ga2O3 films grown by mist chemical vapor deposition[J]. Nano Select, 2021, 2(11): 2112−2120. doi: 10.1002/nano.202100029

    CrossRef Google Scholar

    [78] Pintor-Monroy M I, Reyes-Banda M G, Avila-Avendano C, et al. Tuning electrical properties of amorphous Ga2O3 thin films for deep UV phototransistors[J]. IEEE Sensors J, 2021, 21(13): 14807−14814. doi: 10.1109/JSEN.2021.3074623

    CrossRef Google Scholar

    [79] Han Z Y, Song S, Liang H L, et al. High-performance IGZO/Ga2O3 dual-active-layer thin film transistor for deep UV detection[J]. Appl Phys Lett, 2022, 120(26): 262102. doi: 10.1063/5.0089038

    CrossRef Google Scholar

    [80] Chen Y C, Lu Y J, Liao M Y, et al. 3D solar-blind Ga2O3 photodetector array realized via origami method[J]. Adv Funct Mater, 2019, 29(50): 1906040. doi: 10.1002/adfm.201906040

    CrossRef Google Scholar

    [81] Qin Y, Li L H, Yu Z A, et al. Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging[J]. Adv Sci, 2021, 8(20): 2101106. doi: 10.1002/advs.202101106

    CrossRef Google Scholar

    [82] Huang Z H, Zhou S R, Chen L R, et al. Fully transparent amorphous Ga2O3-based solar-blind ultraviolet photodetector with graphitic carbon electrodes[J]. Crystals, 2022, 12(10): 1427. doi: 10.3390/cryst12101427

    CrossRef Google Scholar

    [83] Ji X Q, Yin X M, Yuan Y Z, et al. Amorphous Ga2O3 Schottky photodiodes with high-responsivity and photo-to-dark current ratio[J]. J Alloys Comp, 2023, 933: 167735. doi: 10.1016/j.jallcom.2022.167735

    CrossRef Google Scholar

  • Due to the absorption of ozone in the stratosphere, ultraviolet radiation of 200-280 nm barely reaches the ground, so this band is usually called as the solar-blind region. The ultraviolet detector working in the solar-blind region naturally has the advantages of low background noise, high anti-interference ability, and all-weather operation. Moreover, due to the absorption of the atmosphere, the transmission distance of communication signal in the solar-blind region is controllable, and the risk of eavesdropping is low. Therefore, the solar-blind UV photodetector has very important application value in the fields of UV monitoring, space safety communication, and optical imaging.

    Gallium oxide (Ga2O3) has an extremely wide band gap (4.4-5.3 eV), almost covering the entire solar-blind UV region, and is considered as one of the most ideal materials for the preparation of solar-blind UV photodetectors. Compared with the single crystal or epitaxy materials, amorphous gallium oxide (a-Ga2O3) thin film has lower preparation temperature, more flexible substrate selection, and better uniformity. Therefore, it has become a new research hotspot in the field of Ga2O3 solar-blind UV detection in most recent years.

    The a-Ga2O3-based solar-blind UV photodetectors are mainly divided into MSM, junction, TFT and array types. The MSM device is based on two back-to-back Schottky diodes, often with interfingered metal electrodes. It is the most widely used because of its simple structure and high responsivity. Junction-type devices are mainly constructed in two ways, one is to form a heterojunction with another semiconductor, and the other is to form a Schottky junction with metal. Under the influence of built-in electric field, the photogenerated electron-hole pairs are separated rapidly, which guarantees the device a faster response speed. Meanwhile, dark current can also be suppressed due to the existence of barrier at the interface. The TFT device is added with a control gate on the basis of the structure of the two-terminal device. The suitable selection of gate voltage can make carriers accumulate in the channel, thus amplifying the gain. In addition, the application of gate voltage pulse might accelerate the non-equilibrium carriers’ recombination and improve the recovery speed of the device. Array devices construct several detector units into a large area array to realize solar-blind UV imaging.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint