Tian S H, Huang Y M, Xu Y J, et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040
Citation: Tian S H, Huang Y M, Xu Y J, et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

Study of off-axis telescope misalignment correction method using out-of-focus spot

More Information
  • Off-axis reflector telescopes are mainly used in space astronomy observation and other related fields. The image quality of off-axis two-inversion telescopes is sensitive to lens misalignment and is more difficult to calibrate using a laser interferometer after misalignment in an operating environment. To address this challenge, this paper proposes a method that uses the out-of-focus spot map of the system for infinity point targets and uses the Swin-Transformer network to calculate the amount of lateral misalignment of the secondary mirror. Theoretical calculations were used to determine the camera defocus positions that could avoid the multi-solution problem, and simulations were used to investigate the effect of different defocus amounts on calibration accuracy. The trained network uses a frame of out-of-focus spot map of the out-of-tune system to perform the estimation of the amount of out-of-tune. Both simulation analysis and experimental results verify the effectiveness of the method, which can achieve high accuracy and fast correction of out-of-tune telescope systems in the working environment.
  • 加载中
  • [1] Kim S, Yang H S, Lee Y W, et al. Merit function regression method for efficient alignment control of two-mirror optical systems[J]. Opt Express, 2007, 15(8): 5059−5068. doi: 10.1364/OE.15.005059

    CrossRef Google Scholar

    [2] Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040

    CrossRef Google Scholar

    [3] Liu Z, Peng Q, Xu Y J, et al. Misalignment calculation on off-axis telescope system via fully connected neural network[J]. IEEE Photonics J, 2020, 12(4): 0600112. doi: 10.1109/jphot.2020.3005910

    CrossRef Google Scholar

    [4] Ju G H, Ma H C, Yan C X. Aberration fields of off-axis astronomical telescopes induced by rotational misalignments[J]. Opt Express, 2018, 26(19): 24816−24834. doi: 10.1364/OE.26.024816

    CrossRef Google Scholar

    [5] Zhang X B, Zhang D, Xu S Y, et al. Active optical alignment of off-axis telescopes based on nodal aberration theory[J]. Opt Express, 2016, 24(23): 26392−26413. doi: 10.1364/OE.24.026392

    CrossRef Google Scholar

    [6] Lee H, Dalton G B, Tosh I A J, et al. Computer-guided alignment I: phase and amplitude modulation of alignment-influenced optical wavefront[J]. Opt Express, 2007, 15(6): 3127−3139. doi: 10.1364/OE.15.003127

    CrossRef Google Scholar

    [7] Guerra-Ramos D, Díaz-García L, Trujillo-Sevilla J, et al. Piston alignment of segmented optical mirrors via convolutional neural networks[J]. Opt Lett, 2018, 43(17): 4264−4267. doi: 10.1364/OL.43.004264

    CrossRef Google Scholar

    [8] Oteo E, Arasa J. New strategy for misalignment calculation in optical systems using artificial neural networks[J]. Opt Eng, 2013, 52(7): 074105. doi: 10.1117/1.OE.52.7.074105

    CrossRef Google Scholar

    [9] 戴勋义, 谭毅, 任戈, 等. 扫描哈特曼方法的像质检测性能分析[J]. 光学学报, 2020, 40(7): 0712002. doi: 10.3788/AOS202040.0712002

    CrossRef Google Scholar

    Dai X Y, Tan Y, Ren G, et al. Analysis of image quality detection performance of scanning Hartmann technology[J]. Acta Opt Sin, 2020, 40(7): 0712002. doi: 10.3788/AOS202040.0712002

    CrossRef Google Scholar

    [10] 毕津慈, 高志山, 朱丹, 等. 基于粒子群优化算法的光学相干层析像差校正方法[J]. 光学学报, 2020, 40(10): 1011002. doi: 10.3788/AOS202040.1011002

    CrossRef Google Scholar

    Bi J C, Gao Z S, Zhu D, et al. An optical coherence tomographic aberration correction method based on the particle swarm optimization algorithm[J]. Acta Opt Sin, 2020, 40(10): 1011002. doi: 10.3788/AOS202040.1011002

    CrossRef Google Scholar

    [11] 周明尧, 侯俊峰, 王东光, 等. 天文望远镜无偏消旋镜装调方案设计及验证[J]. 中国激光, 2020, 47(6): 0604005. doi: 10.3788/CJL202047.0604005

    CrossRef Google Scholar

    Zhou M Y, Hou J F, Wang D G, et al. Design and verification of depolarized derotator alignment scheme in astronomical telescope[J]. Chin J Lasers, 2020, 47(6): 0604005. doi: 10.3788/CJL202047.0604005

    CrossRef Google Scholar

    [12] 王钰, 张新, 王灵杰, 等. 基于人工神经网络方法的自由曲面光学系统装调[J]. 光学学报, 2013, 33(12): 1211001. doi: 10.3788/AOS201333.1211001

    CrossRef Google Scholar

    Wang Y, Zhang X, Wang L J, et al. Freeform optical system alignment based on artificial neural networks[J]. Acta Opt Sin, 2013, 33(12): 1211001. doi: 10.3788/AOS201333.1211001

    CrossRef Google Scholar

    [13] Ma X F, Xie Z L, Ma H T, et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Opt Express, 2019, 27(11): 16058−16070. doi: 10.1364/OE.27.016058

    CrossRef Google Scholar

    [14] Xu Y J, He D, Wang Q, et al. An improved method of measuring wavefront aberration based on image with machine learning in free space optical communication[J]. Sensors, 2019, 19(17): 3665. doi: 10.3390/s19173665

    CrossRef Google Scholar

    [15] 李志俊, 毛耀, 亓波, 等. 量子光通信中位置修正单检测控制方法[J]. 光电工程, 2022, 49(3): 210311. doi: 10.12086/oee.2022.210311

    CrossRef Google Scholar

    Li Z J, Mao Y, Qi B, et al. Research on control technology of single detection based on position correction in quantum optical communication[J]. Opto-Electron Eng, 2022, 49(3): 210311. doi: 10.12086/oee.2022.210311

    CrossRef Google Scholar

    [16] 张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8): 220019. doi: 10.12086/oee.2022.220019

    CrossRef Google Scholar

    Zhang L Z, Yang T, Wu Y, et al. Image measurement-based two-stage control of Stewart platform[J]. Opto-Electron Eng, 2022, 49(8): 220019. doi: 10.12086/oee.2022.220019

    CrossRef Google Scholar

    [17] 夏文强, 何秋农, 段倩文, 等. 基于传感器优化与鲁棒预测的等效加速度前馈[J]. 光电工程, 2021, 48(11): 210153. doi: 10.12086/oee.2021.210153

    CrossRef Google Scholar

    Xia W Q, He Q N, Duan Q W, et al. Equivalent acceleration feedforward based on sensor optimization and robust prediction[J]. Opto-Electron Eng, 2021, 48(11): 210153. doi: 10.12086/oee.2021.210153

    CrossRef Google Scholar

    [18] 邹雨彤. 光学成像系统中的自动检焦技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021.

    Google Scholar

    Zou Y T. Research on auto focus technology in optical imaging system[D]. Chengdu: The Institute of Optics and Electronics, The Chinese Academy of Sciences, 2021.

    Google Scholar

    [19] 马晓雨. 基于光学检测与图像处理相结合的调焦技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.

    Google Scholar

    Ma X Y. The research on focusing technology based on the combination of optical detecting and image processing[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2020.

    Google Scholar

    [20] 李启辉, 丁亚林, 修吉宏, 等. 基于图像处理的自准直检焦方法[J]. 激光与光电子学进展, 2020, 57(2): 021104. doi: 10.3788/LOP57.021104

    CrossRef Google Scholar

    Li Q H, Ding Y L, Xiu J H, et al. Self-collimation inspection and focusing method based on image processing[J]. Laser Optoelectron Prog, 2020, 57(2): 021104. doi: 10.3788/LOP57.021104

    CrossRef Google Scholar

    [21] 刘柱. 离轴望远镜失调误差检测技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021.

    Google Scholar

    Liu Z. Study on off-axis telescope misalignment detection technology[D]. Chengdu: The Institute of Optics and Electronics, The Chinese Academy of Sciences, 2021.

    Google Scholar

    [22] 李蕾. 基于Zernike矢量多项式的离轴反射系统装调技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    Google Scholar

    Li L. Alignment technique for off-axis reflective systems based on Zernike vector polynomials[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.

    Google Scholar

    [23] 周文, 陈秀峰, 杨冬晓. 光子学基础[M]. 杭州: 浙江大学出版社, 2000.

    Google Scholar

    Zhou W, Chen X F, Yang D X. Fundamentals of Photonics[M]. Hangzhou: Zhejiang University Press, 2000.

    Google Scholar

    [24] 周亮, 刘朝晖, 单秋莎, 等. 大景深成像系统中目标离焦量的测定[J]. 光子学报, 2018, 47(10): 1011003. doi: 10.3788/gzxb20184710.1011003

    CrossRef Google Scholar

    Zhou L, Liu Z H, Shan Q S, et al. Measurement of the object defocus with extended depth-of-field imaging system[J]. Acta Photon Sin, 2018, 47(10): 1011003. doi: 10.3788/gzxb20184710.1011003

    CrossRef Google Scholar

    [25] Liu Z, Lin Y T, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986.

    Google Scholar

  • Off-axis reflector telescopes are mainly used in space astronomy observation and other fields. The imaging quality of off-axis two-reflection telescopes is sensitive to the lens misalignment. This makes the correction of out-of-tune telescope systems in the working environment hindered. To address this challenge, this paper proposes a method that uses the out-of-focus spot map of the system for infinity point targets and uses the Swin-Transformer network to calculate the amount of sub-mirror lateral misalignment. Through the derivation and analysis of the wavefront phase and point spread function formulas, it is pointed out that the use of a non-special location of the out-of-focus spot to avoid the focal spot can avoid the occurrence of multiple solutions so that the network can solve the system corresponding to the amount of misalignment from the spot morphology. In order to avoid the adverse effects of the special out-of-focus location, we observe the distribution range of the solution set and the pseudo-solution set through the Monte Carlo analysis method to determine whether the selected camera out-of-focus location is in a special position or not. We give the general implementation procedure of this method, according to which a reasonable amount of random transverse misalignment is applied to the simulation model secondary mirror in the simulation. The out-of-focus spot map is recorded to generate a dataset for network training. A test set is generated for validation, and the trained network can be used to estimate the amount of misalignment using one frame of the out-of-focus spot map of the misalignment system. The simulation shows that the out-of-focus amount is proportional to the correction accuracy within a certain out-of-focus range. Since this is an image-based method, we also tested the noise-resistance performance of the out-of-focus scheme with the highest accuracy. Finally, the predicted misalignment of the test sample set was verified by the experimental platform, and the mean prediction error of the eccentric misalignment was 0.0072 mm and the mean prediction error of the tilt misalignment was 0.0055° when compared with the real misalignment. The average computation time is less than 120 ms for a single computation when compared with the wavefront of the system before the misalignment. The simulation analysis and experimental results verify the effectiveness of the method, which can realize the misalignment telescope system in the working environment with high accuracy and fast correction.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint