Sun J L, Wang S C, Zhou Z K, et al. Generation of optical skyrmions formed by electromagnetic field vectors under 4π focal configurations[J]. Opto-Electron Eng, 2023, 50(6): 230059. doi: 10.12086/oee.2023.230059
Citation: Sun J L, Wang S C, Zhou Z K, et al. Generation of optical skyrmions formed by electromagnetic field vectors under 4π focal configurations[J]. Opto-Electron Eng, 2023, 50(6): 230059. doi: 10.12086/oee.2023.230059

Generation of optical skyrmions formed by electromagnetic field vectors under 4π focal configurations

    Fund Project: National Key R&D Program of China (2021YFB2802003), National Natural Science Foundation of China (NSFC) (61975066, 62075084, 62075085, 62005104), Guangdong Basic and Applied Basic Research Foundation (2021A1515011586, 2020A1515010615, 2020B1515020058), Guangzhou Science and Technology Program (202002030258).
More Information
  • Optical skyrmions provide a new idea and approach to endow structured light and spatial-temporal light with topological properties. In this paper, the longitudinal and transversal components of the focused light field are decoupled and can be controlled independently by modulating the polarizations and phases of two pairs of counter-propagating incident cylindrical vector beams under 4π focal configuration. Under this condition, Néel-type and Bloch-type optical skyrmions formed by electromagnetic field vectors are constructed in the focal plane. When one pair of the incident beams is radially polarized with a phase difference of π and the other pair is radially polarized in phase, a Néel-type optical skyrmion formed by electric field vectors can be constructed in the focal plane of the 4π focal system. The corresponding focal magnetic field is purely azimuthally polarized. If we substitute the other pair of the incident beams with azimuthally polarized beams, Bloch-type optical skyrmions formed by electromagnetic field vectors can be constructed in the focal plane, where the one formed by magnetic field vectors has a π/2 phase lead compared with the that formed by electric field vectors. This work provides a theoretical basis for further research on the interactions between matter and optical skyrmions formed by electromagnetic field vectors at micro and nano scales in free space.
  • 加载中
  • [1] Rivera N, Kaminer I. Light–matter interactions with photonic quasiparticles[J]. Nat Rev Phys, 2020, 2(10): 538−561. doi: 10.1038/s42254-020-0224-2

    CrossRef Google Scholar

    [2] Song M W, Feng L, Huo P C, et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface[J]. Nat Nanotechnol, 2023, 18(1): 71−78. doi: 10.1038/s41565-022-01256-4

    CrossRef Google Scholar

    [3] Zhang Y X, Pu M B, Jin J J, et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 2022, 5(11): 220058. doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [4] Shen Y, Zhang Q, Shi P, et al. Topological quasiparticles of light: optical skyrmions and beyond[Z]. arXiv: 220510329, 2022. https://doi.org/10.48550/arXiv.2205.10329.

    Google Scholar

    [5] Skyrme T H R. A unified field theory of mesons and baryons[J]. Nucl Phys, 1962, 31: 556−569. doi: 10.1016/0029-5582(62)90775-7

    CrossRef Google Scholar

    [6] Fert A, Cros V, Sampaio J. Skyrmions on the track[J]. Nat Nanotechnol, 2013, 8(3): 152−156. doi: 10.1038/nnano.2013.29

    CrossRef Google Scholar

    [7] Kézsmárki I, Bordács S, Milde P, et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8[J]. Nat Mater, 2015, 14(11): 1116−1122. doi: 10.1038/nmat4402

    CrossRef Google Scholar

    [8] Maccariello D, Legrand W, Reyren N, et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature[J]. Nat Nanotechnol, 2018, 13(3): 233−237. doi: 10.1038/s41565-017-0044-4

    CrossRef Google Scholar

    [9] Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions[J]. Nat Nanotechnol, 2013, 8(12): 899−911. doi: 10.1038/nnano.2013.243

    CrossRef Google Scholar

    [10] Romming N, Hanneken C, Menzel M, et al. Writing and deleting single magnetic skyrmions[J]. Science, 2013, 341(6146): 636−639. doi: 10.1126/science.1240573

    CrossRef Google Scholar

    [11] Sampaio J, Cros V, Rohart S, et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[J]. Nat Nanotechnol, 2013, 8(11): 839−844. doi: 10.1038/nnano.2013.210

    CrossRef Google Scholar

    [12] Yu X Z, Kanazawa N, Zhang W Z, et al. Skyrmion flow near room temperature in an ultralow current density[J]. Nat Commun, 2012, 3(1): 988. doi: 10.1038/ncomms1990

    CrossRef Google Scholar

    [13] Tsesses S, Ostrovsky E, Cohen K, et al. Optical skyrmion lattice in evanescent electromagnetic fields[J]. Science, 2018, 361(6406): 993−996. doi: 10.1126/science.aau0227

    CrossRef Google Scholar

    [14] Du L P, Yang A P, Zayats A V, et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nat Phys, 2019, 15(7): 650−654. doi: 10.1038/s41567-019-0487-7

    CrossRef Google Scholar

    [15] Shen Y J, Hou Y N, Papasimakis N, et al. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space[J]. Nat Commun, 2021, 12(1): 5891. doi: 10.1038/s41467-021-26037-w

    CrossRef Google Scholar

    [16] Shen Y J, Martínez E C, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 2022, 9(1): 296−303. doi: 10.1021/acsphotonics.1c01703

    CrossRef Google Scholar

    [17] Lei X R, Yang A P, Shi P, et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies[J]. Phys Rev Lett, 2021, 127(23): 237403. doi: 10.1103/PhysRevLett.127.237403

    CrossRef Google Scholar

    [18] Shi P, Du L P, Yuan X C. Spin photonics: from transverse spin to photonic skyrmions[J]. Nanophotonics, 2021, 10(16): 3927−3943. doi: 10.1515/nanoph-2021-0046

    CrossRef Google Scholar

    [19] Lin M, Zhang W L, Liu C, et al. Photonic spin skyrmion with dynamic position control[J]. ACS Photonics, 2021, 8(9): 2567−2572. doi: 10.1021/acsphotonics.1c00762

    CrossRef Google Scholar

    [20] Bai C Y, Chen J, Zhang Y X, et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons[J]. Opt Express, 2020, 28(7): 10320−10328. doi: 10.1364/OE.384718

    CrossRef Google Scholar

    [21] 何金枫, 王吉明, 刘友文, 等. Ince-Gaussian矢量光场束腰位置对紧聚焦特性影响的研究[J]. 激光技术, 2021, 45(1): 1−6. doi: 10.7510/jgjs.issn.1001-3806.2021.01.001

    CrossRef Google Scholar

    He J F, Wang J M, Liu Y W, et al. Research on the effect of waist position changing of Ince-Gaussian vectorial beam on tightly focusing characteristics[J]. Laser Technol, 2021, 45(1): 1−6. doi: 10.7510/jgjs.issn.1001-3806.2021.01.001

    CrossRef Google Scholar

    [22] Lu Y D, Xu Y, Ouyang X, et al. Cylindrical vector beams reveal radiationless anapole condition in a resonant state[J]. Opto-Electron Adv, 2022, 5(4): 210014. doi: 10.29026/oea.2022.210014

    CrossRef Google Scholar

    [23] 夏小兰, 曾宪智, 宋世超, 等. 基于柱矢量光调控的纵向超分辨率准球形多焦点阵列[J]. 光电工程, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    CrossRef Google Scholar

    Xia X L, Zeng X Z, Song S C, et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    CrossRef Google Scholar

    [24] Wang X Y, Rui G H, Gong L P, et al. Manipulation of resonant metallic nanoparticle using 4Pi focusing system[J]. Opt Express, 2016, 24(21): 24143−24152. doi: 10.1364/OE.24.024143

    CrossRef Google Scholar

    [25] Cui W J, Song F, Song F F, et al. Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam[J]. Opt Express, 2016, 24(18): 20062−20068. doi: 10.1364/OE.24.020062

    CrossRef Google Scholar

    [26] Chen Z Y, Zhao D M. 4Pi focusing of spatially modulated radially polarized vortex beams[J]. Opt Lett, 2012, 37(8): 1286−1288. doi: 10.1364/OL.37.001286

    CrossRef Google Scholar

    [27] Yan S H, Yao B L, Rupp R. Shifting the spherical focus of a 4Pi focusing system[J]. Opt Express, 2011, 19(2): 673−678. doi: 10.1364/OE.19.000673

    CrossRef Google Scholar

    [28] Chen W B, Zhan Q W. Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy[J]. Opt Lett, 2009, 34(16): 2444−2446. doi: 10.1364/OL.34.002444

    CrossRef Google Scholar

    [29] Bokor N, Davidson N. Toward a spherical spot distribution with 4π focusing of radially polarized light[J]. Opt Lett, 2004, 29(17): 1968−1970. doi: 10.1364/OL.29.001968

    CrossRef Google Scholar

    [30] Gu M. Advanced Optical Imaging Theory[M]. Berlin Heidelberg: Springer, 2000. https://doi.org/10.1007/978-3-540-48471-4.

    Google Scholar

    [31] Wang S C, Cao Y Y, Li X P. Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy[J]. Opt Lett, 2017, 42(23): 5050−5053. doi: 10.1364/OL.42.005050

    CrossRef Google Scholar

    [32] Wang S C, Cao H K, Sun J L, et al. Subwavelength generation of orientation-unlimited energy flow in 4π microscopy[J]. Opt Express, 2022, 30(1): 138−145. doi: 10.1364/OE.447294

    CrossRef Google Scholar

    [33] Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proc Roy Soc A Math Phys Sci, 1959, 253(1274): 358−379. doi: 10.1098/rspa.1959.0200

    CrossRef Google Scholar

    [34] Chen G Y, Song F, Wang H T. Sharper focal spot generated by 4π tight focusing of higher-order Laguerre–Gaussian radially polarized beam[J]. Opt Lett, 2013, 38(19): 3937−3940. doi: 10.1364/OL.38.003937

    CrossRef Google Scholar

    [35] Davis T J, Janoschka D, Dreher P, et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 2020, 368(6489): eaba6415. doi: 10.1126/science.aba6415

    CrossRef Google Scholar

  • Topological photonics inspired by the discovery of photonic topological insulators opens a path towards the discovery of fundamentally new states of light and potentially revolutionary applications, such as slow light, photonic circuitry, and topologically protected lasing. Recently, optical skyrmions, emerging as fire-new objects of study in topological photonics, were first proposed by Shai Tsesses and Luping Du et al. and may provide a new idea and approach to endow structured light and spatial-temporal light with topological properties. Resorting to vector field manipulations, different types of optical skyrmions have been generated in free space or by controlling the evanescent waves propagating along the surface of metal films. One of the most significant potential applications of optical skyrmions is the realization of the novel phenomena excited by the skyrmion-matter interactions at micro and nano scales, which could be applied to optical storage, high-resolution imaging, and precision metrology. However, there always exists a π/2 phase difference between the longitudinal and the transversal components of the focused light field under traditional tightly focusing systems in free space, and hence the generation of micro- or nano-scale optical skyrmions formed by electromagnetic field vectors in free space is still a challenge in this flourishing field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint