Li S, Wang B W, Guan H T, et al. Far-field computational optical imaging techniques based on synthetic aperture: a review[J]. Opto-Electron Eng, 2023, 50(10): 230090. doi: 10.12086/oee.2023.230090
Citation: Li S, Wang B W, Guan H T, et al. Far-field computational optical imaging techniques based on synthetic aperture: a review[J]. Opto-Electron Eng, 2023, 50(10): 230090. doi: 10.12086/oee.2023.230090

Far-field computational optical imaging techniques based on synthetic aperture: a review

    Fund Project: Project supported by National Natural Science Foundation of China (61905115, 62105151, 62175109, U21B2033), National Major Scientific Instrument Development Project (62227818), Leading Technology of Jiangsu Basic Research Plan (BK20192003), Youth Foundation of Jiangsu Province (BK20190445, BK20210338), Biomedical Competition Foundation of Jiangsu Province (BE2022847), Open Fund for Laboratory of Spatial Optoelectronic Measurement and Perception, Zhongguancun Open Laboratory of Optical Measurement and Intelligent Perception and Beijing Institute of Control and Engineering (LabSOMP-2022-05), Key National Industrial Technology Cooperation Foundation of Jiangsu Province (BZ2022039), Fundamental Research Funds for the Central Universities (30920032101), and Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (JSGP202105, JSGP202201)
More Information
  • Conventional optical imaging is essentially a process of recording and reproducing the intensity signal of a scene in the spatial dimension with direct uniform sampling. Therefore, the resolution and information content of imaging are inevitably constrained by several physical limitations, such as optical diffraction limit and spatial bandwidth product of the imaging system. How to break these physical limitations and obtain higher resolution and broader image field of view has been an eternal topic in this field. Computational optical imaging, by combining front-end optical modulation with back-end signal processing, offers a new approach to surpassing the diffraction limit of imaging systems and realizing super-resolution imaging. In this paper, we introduce the relevant research efforts on improving imaging resolution and expanding the spatial bandwidth product through computational optical synthetic aperture imaging, including the basic theory and technologies based on coherent active synthetic aperture imaging and incoherent passive synthetic aperture imaging. Furthermore, this paper reveals the pressing demand for "incoherent, passive, and beyond-diffraction-limit" imaging, identifies the bottlenecks, and provides an outlook on future research directions and potential technical approaches to address these challenges.
  • 加载中
  • [1] 左超, 陈钱. 分辨率、超分辨率与空间带宽积拓展−从计算光学成像角度的一些思考[J]. 中国光学(中英文), 2022, 15(6): 1105−1166. doi: 10.37188/CO.2022-0105

    CrossRef Google Scholar

    Zuo C, Chen Q. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging[J]. Chin Opt, 2022, 15(6): 1105−1166. doi: 10.37188/CO.2022-0105

    CrossRef Google Scholar

    [2] 左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与激光工程, 2022, 51(2): 20220110. doi: 10.3788/IRLA20220110

    CrossRef Google Scholar

    Zuo C, Chen Q. Computational optical imaging: an overview[J]. Infrared Laser Eng, 2022, 51(2): 20220110. doi: 10.3788/IRLA20220110

    CrossRef Google Scholar

    [3] 张润南, 蔡泽伟, 孙佳嵩, 等. 光场相干测量及其在计算成像中的应用[J]. 激光与光电子学进展, 2021, 58(18): 1811003. doi: 10.3788/LOP202158.1811003

    CrossRef Google Scholar

    Zhang R N, Cai Z W, Sun J S, et al. Optical-field coherence measurement and its applications in computational imaging[J]. Laser Optoelectron Prog, 2021, 58(18): 1811003. doi: 10.3788/LOP202158.1811003

    CrossRef Google Scholar

    [4] Wang B W, Zou Y, Zhang L F, et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J]. Opt Lasers Eng, 2022, 156: 107078. doi: 10.1016/j.optlaseng.2022.107078

    CrossRef Google Scholar

    [5] Fan Y, Sun J S, Shu Y F, et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination[J]. Laser Photon Rev, 2023, 17(3): 2200201. doi: 10.1002/lpor.202200201

    CrossRef Google Scholar

    [6] Hellerer T, Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Appl Phys Lett, 2004, 85(1): 25−27. doi: 10.1063/1.1768312

    CrossRef Google Scholar

    [7] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km[J]. Optica, 2021, 8(3): 344−349. doi: 10.1364/OPTICA.408657

    CrossRef Google Scholar

    [8] Wang B W, Zou Y, Zhang L F, et al. Low-light-level image super-resolution reconstruction based on a multi-scale features extraction network[J]. Photonics, 2021, 8(8): 321. doi: 10.3390/photonics8080321

    CrossRef Google Scholar

    [9] Holloway J. Synthetic apertures for visible imaging using Fourier ptychography[D]. Houston: Rice University, 2016.

    Google Scholar

    [10] Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging[J]. Science, 2014, 343(6166): 58−61. doi: 10.1126/science.1246775

    CrossRef Google Scholar

    [11] Ryle M, Vonberg D D. Solar radiation on 175 Mc. /s[J]. Nature, 1946, 158(4010): 339−340. doi: 10.1038/158339b0

    CrossRef Google Scholar

    [12] Napier P J, Thompson A R, Ekers R D. The very large array: design and performance of a modern synthesis radio telescope[J]. Proc IEEE, 1983, 71(11): 1295−1320. doi: 10.1109/PROC.1983.12765

    CrossRef Google Scholar

    [13] Ouchi K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sens, 2013, 5(2): 716−807. doi: 10.3390/rs5020716

    CrossRef Google Scholar

    [14] Moreira A, Prats-Iraola P, Younis M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geosci Remote Sens Mag, 2013, 1(1): 6−43. doi: 10.1109/MGRS.2013.2248301

    CrossRef Google Scholar

    [15] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 1966, 56(11): 1463−1471. doi: 10.1364/JOSA.56.001463

    CrossRef Google Scholar

    [16] 张明珠, 王海仁, 左营喜, 等. 射电望远镜结构技术发展综述[J]. 华中科技大学学报(自然科学版), 2023, 51(1): 48−58. doi: 10.13245/j.hust.239104

    CrossRef Google Scholar

    Zhang M Z, Wang H R, Zuo Y X, et al. Review of the technical development of the structures of radio telescopes[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2023, 51(1): 48−58. doi: 10.13245/j.hust.239104

    CrossRef Google Scholar

    [17] Ryle M, Hewish A. The synthesis of large radio telescopes[J]. Mon Not Roy Astron Soc, 1960, 120(3): 220−230. doi: 10.1093/mnras/120.3.220

    CrossRef Google Scholar

    [18] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proc Roy Soc A Math Phys Eng Sci, 1949, 197(1051): 454−487. doi: 10.1098/rspa.1949.0075

    CrossRef Google Scholar

    [19] Gabor D, Goss W P. Interference microscope with total wavefront reconstruction[J]. J Opt Soc Am, 1966, 56(7): 849−858. doi: 10.1364/JOSA.56.000849

    CrossRef Google Scholar

    [20] Aleksoff C C, Accetta J S, Peterson L M, et al. Synthetic aperture imaging with a pulsed Co2 tea laser[J]. Proc SPIE, 1987, 0783: 29−41. doi: 10.1117/12.940575

    CrossRef Google Scholar

    [21] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction[J]. Opt Express, 2011, 19(13): 12027−12038. doi: 10.1364/OE.19.012027

    CrossRef Google Scholar

    [22] Kahraman S, Bacher R. A comprehensive review of hyperspectral data fusion with lidar and sar data[J]. Annu Rev Control, 2021, 51: 236−253. doi: 10.1016/j.arcontrol.2021.03.003

    CrossRef Google Scholar

    [23] Mo D, Wang R, Wang N, et al. Three-dimensional inverse synthetic aperture lidar imaging for long-range spinning targets[J]. Opt Lett, 2018, 43(4): 839−842. doi: 10.1364/OL.43.000839

    CrossRef Google Scholar

    [24] Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Opt Lett, 2002, 27(22): 1983−1985. doi: 10.1364/OL.27.001983

    CrossRef Google Scholar

    [25] Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Appl Opt, 2005, 44(35): 7621−7629. doi: 10.1364/AO.44.007621

    CrossRef Google Scholar

    [26] Li J J, Zhou N, Sun J S, et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy[J]. Light Sci Appl, 2022, 11(1): 154. doi: 10.1038/s41377-022-00815-7

    CrossRef Google Scholar

    [27] Hilaire P S, Benton S A, Lucente M. Synthetic aperture holography: a novel approach to three-dimensional displays[J]. J Opt Soc Am A, 1992, 9(11): 1969−1977. doi: 10.1364/JOSAA.9.001969

    CrossRef Google Scholar

    [28] Martínez-León L, Javidi B. Synthetic aperture single-exposure on-axis digital holography[J]. Opt Express, 2008, 16(1): 161−169. doi: 10.1364/OE.16.000161

    CrossRef Google Scholar

    [29] Mirsky S K, Shaked N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J]. Opt Express, 2019, 27(19): 26708−26720. doi: 10.1364/OE.27.026708

    CrossRef Google Scholar

    [30] Zheng G A, Shen C, Jiang S W, et al. Concept, implementations and applications of Fourier ptychography[J]. Nat Rev Phys, 2021, 3(3): 207−223. doi: 10.1038/s42254-021-00280-y

    CrossRef Google Scholar

    [31] Pan A, Zuo C, Yao B L. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Rep Prog Phys, 2020, 83(9): 096101. doi: 10.1088/1361-6633/aba6f0

    CrossRef Google Scholar

    [32] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nat Photonics, 2013, 7(9): 739−745. doi: 10.1038/nphoton.2013.187

    CrossRef Google Scholar

    [33] Konda P C, Loetgering L, Zhou K C, et al. Fourier ptychography: current applications and future promises[J]. Opt Express, 2020, 28(7): 9603−9630. doi: 10.1364/OE.386168

    CrossRef Google Scholar

    [34] 孙佳嵩. 基于傅立叶叠层成像的大视场高分辨率定量相位显微成像方法研究[D]. 南京: 南京理工大学, 2019.

    Google Scholar

    Sun J S. Research on wide-field high-resolution quantitative phase microscopy methods based on Fourier ptychography[D]. Nanjing: Nanjing University of Science and Technology, 2019.

    Google Scholar

    [35] 孙佳嵩, 张玉珍, 陈钱, 等. 傅里叶叠层显微成像技术: 理论、发展和应用[J]. 光学学报, 2016, 36(10): 1011005. doi: 10.3788/aos201636.1011005

    CrossRef Google Scholar

    Sun J S, Zhang Y Z, Chen Q, et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Opt Sin, 2016, 36(10): 1011005. doi: 10.3788/aos201636.1011005

    CrossRef Google Scholar

    [36] Dong S Y, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Opt Express, 2014, 22(11): 13586−13599. doi: 10.1364/OE.22.013586

    CrossRef Google Scholar

    [37] Holloway J, Asif M S, Sharma M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Trans Comput Imaging, 2016, 2(3): 251−265. doi: 10.1109/TCI.2016.2557067

    CrossRef Google Scholar

    [38] Sun J S, Chen Q, Zhang Y Z, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Opt Express, 2016, 24(14): 15765−15781. doi: 10.1364/OE.24.015765

    CrossRef Google Scholar

    [39] Holloway J, Wu Y C, Sharma M K, et al. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Sci Adv, 2017, 3(4): e1602564. doi: 10.1126/sciadv.1602564

    CrossRef Google Scholar

    [40] 李志新. 基于相位信息的远场高分辨率光学成像技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.

    Google Scholar

    Li Z X. Researches on far field high resolution optical imaging technology based on phase information[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2020.

    Google Scholar

    [41] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256−1262. doi: 10.1016/j.ultramic.2009.05.012

    CrossRef Google Scholar

    [42] Sun J S, Chen Q, Zhang Y Z, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomed Opt Express, 2016, 7(4): 1336−1350. doi: 10.1364/BOE.7.001336

    CrossRef Google Scholar

    [43] Cui B Q, Zhang S H, Wang Y C, et al. Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform[J]. Opt Express, 2022, 30(12): 20697−20711. doi: 10.1364/OE.459908

    CrossRef Google Scholar

    [44] Zhao M, Zhang X H, Tian Z M, et al. Neural network model with positional deviation correction for Fourier ptychography[J]. J Soc Inf Dis, 2021, 29(10): 749−757. doi: 10.1002/jsid.1030

    CrossRef Google Scholar

    [45] 何承刚, 朱友强, 王斌. 基于粒子群优化的宏观傅里叶叠层成像位置失配校准[J]. 光学 精密工程, 2022, 30(23): 2975−2986. doi: 10.37188/OPE.20223023.2975

    CrossRef Google Scholar

    He C G, Zhu Y Q, Wang B. Position misalignment correction method for macroscopic Fourier ptychography based on particle swarm optimization[J]. Opt Precision Eng, 2022, 30(23): 2975−2986. doi: 10.37188/OPE.20223023.2975

    CrossRef Google Scholar

    [46] Wang C Y, Hu M H, Takashima Y, et al. Snapshot ptychography on array cameras[J]. Opt Express, 2022, 30(2): 2585−2598. doi: 10.1364/OE.447499

    CrossRef Google Scholar

    [47] Wu J C, Yang F, Cao L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Opt Lasers Eng, 2022, 155: 107068. doi: 10.1016/j.optlaseng.2022.107068

    CrossRef Google Scholar

    [48] Wang B W, Li S, Chen Q, et al. Learning-based single-shot long-range synthetic aperture Fourier ptychographic imaging with a camera array[J]. Opt Lett, 2023, 48(2): 263−266. doi: 10.1364/OL.479074

    CrossRef Google Scholar

    [49] Ma X H, Wang A T, Ma F H, et al. Speckle reduction using phase plate array and lens array[J]. Opto-Electron Adv, 2020, 3(1): 190036. doi: 10.29026/oea.2020.190036

    CrossRef Google Scholar

    [50] Fan Y, Sun J S, Chen Q, et al. Adaptive denoising method for Fourier ptychographic microscopy[J]. Opt Commun, 2017, 404: 23−31. doi: 10.1016/j.optcom.2017.05.02

    CrossRef Google Scholar

    [51] Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring[J]. IEEE Trans Image Process, 2012, 21(4): 1715−1728. doi: 10.1109/TIP.2011.2176954

    CrossRef Google Scholar

    [52] Li Z X, Wen D S, Song Z X, et al. Sub-diffraction visible imaging using macroscopic Fourier ptychography and regularization by denoising[J]. Sensors, 2018, 18(9): 3154. doi: 10.3390/s18093154

    CrossRef Google Scholar

    [53] Shamshad F, Abbas F, Ahmed A. Deep ptych: subsampled Fourier ptychography using generative priors[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 7720–7724. https://doi.org/10.1109/ICASSP.2019.8682179.

    Google Scholar

    [54] Li B P, Ma C W, Ersoy O K, et al. Fourier ptychography reconstruction based on reweighted amplitude flow with regularization by denoising and deep decoder[J]. IEEE Photonics J, 2023, 15(1): 8500110. doi: 10.1109/JPHOT.2022.3230422

    CrossRef Google Scholar

    [55] Yang X, Konda P C, Xu S Q, et al. Quantized Fourier ptychography with binary images from SPAD cameras[J]. Photonics Res, 2021, 9(10): 1958−1969. doi: 10.1364/PRJ.427699

    CrossRef Google Scholar

    [56] Li S, Wang B W, Liang K Y, et al. Far-field synthetic aperture imaging via fourier ptychography with quasi‐plane wave illumination[J]. Adv Photonics Res, 2023, 4(10): 2300180. doi: 10.1002/adpr.202300180

    CrossRef Google Scholar

    [57] Meinel A B, Shannon R R, Whipple F L, et al. A large multiple mirror telescope (MMT) project[J]. Optical Engineering, 1972, 11(2): 110233. doi: 10.1117/12.7971604

    CrossRef Google Scholar

    [58] Hege E K, Beckers J M, Strittmatter P A, et al. Multiple mirror telescope as a phased array telescope[J]. Appl Opt, 1985, 24(16): 2565−2576. doi: 10.1364/AO.24.002565

    CrossRef Google Scholar

    [59] Gardner J P, Mather J C, Clampin M, et al. The james webb space telescope[J]. Space Sci Rev, 2006, 123(4): 485−606. doi: 10.1007/s11214-006-8315-7

    CrossRef Google Scholar

    [60] Golay M J E. Point arrays having compact, nonredundant autocorrelations[J]. J Opt Soc Am, 1971, 61(2): 272−273. doi: 10.1364/JOSA.61.000272

    CrossRef Google Scholar

    [61] Cornwell T J. A novel principle for optimization of the instantaneous Fourier plane coverage of correction arrays[J]. IEEE Trans Antennas Propag, 1988, 36(8): 1165−1167.

    Google Scholar

    [62] Chung S J, Miller D W, de Weck O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Opt Eng, 2004, 43(9): 2156−2167. doi: 10.1117/1.1779232

    CrossRef Google Scholar

    [63] Bell K D, Boucher R H, Vacek R, et al. Assessment of large aperture lightweight imaging concepts[C]//Proceedings of 1996 IEEE Aerospace Applications Conference, 1996: 187–203. https://doi.org/10.1109/AERO.1996.496063.

    Google Scholar

    [64] Fienup J R, Griffith D K, Harrington L, et al. Comparison of reconstruction algorithms for images from sparse-aperture systems[C]//Image Reconstruction from Incomplete Data II. SPIE, 2002, 4792: 1-8.

    Google Scholar

    [65] 朱锡芳, 吴峰, 陶纯堪. 稀疏孔径光学系统成像恢复算法研究[J]. 光子学报, 2007, 36(12): 2319−2324.

    Google Scholar

    Zhu X F, Wu F, Tao C K. Research on image restoration for sparse aperture systems[J]. Acta Photonica Sin, 2007, 36(12): 2319−2324.

    Google Scholar

    [66] Xie Z L, Qi B, Ma H T, et al. Optical transfer function reconstruction in incoherent Fourier ptychography[J]. Chin Phys Lett, 2016, 33(4): 044206. doi: 10.1088/0256-307X/33/4/044206

    CrossRef Google Scholar

    [67] Tang J, Wu J, Wang K Q, et al. RestoreNet-Plus: image restoration via deep learning in optical synthetic aperture imaging system[J]. Opt Lasers Eng, 2021, 146: 106707. doi: 10.1016/j.optlaseng.2021.106707

    CrossRef Google Scholar

    [68] Glindemann A, Algomedo J, Amestica R, et al. The VLTI — a status report[M]//Garcia P J V, Glindemann A, Henning T, et al. The Very Large Telescope Interferometer Challenges for the Future. Dordrecht: Springer, 2003: 35–44. https://doi.org/10.1007/978-94-017-0157-0_3.

    Google Scholar

    [69] Haguenauer P, Alonso J, Bourget P, et al. The very large telescope Interferometer: 2010 edition[J]. Proc SPIE, 2010, 7734: 773404. doi: 10.1117/12.857070

    CrossRef Google Scholar

    [70] Kendrick R L, Duncan A, Ogden C, et al. Flat-panel space-based space surveillance sensor[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013: 9.

    Google Scholar

    [71] Kendrick R L, Duncan A, Ogden C, et al. Segmented planar imaging detector for EO reconnaissance[C]//Proceedings of the Computational Optical Sensing and Imaging 2013, 2013: CM4C. 1. https://doi.org/10.1364/COSI.2013.CM4C.1.

    Google Scholar

    [72] Gao W P, Wang X R, Ma L, et al. Quantitative analysis of segmented planar imaging quality based on hierarchical multistage sampling lens array[J]. Opt Express, 2019, 27(6): 7955−7967. doi: 10.1364/OE.27.007955

    CrossRef Google Scholar

    [73] Gao W P, Yuan Y, Wang X R, et al. Quantitative analysis and optimization design of the segmented planar integrated optical imaging system based on an inhomogeneous multistage sampling lens array[J]. Opt Express, 2021, 29(8): 11869−11884. doi: 10.1364/OE.421298

    CrossRef Google Scholar

    [74] Ding C, Zhang X C, Liu X Y, et al. Structure design and image reconstruction of hexagonal-array photonics integrated interference imaging system[J]. IEEE Access, 2020, 8: 139396−139403. doi: 10.1109/ACCESS.2020.3013316

    CrossRef Google Scholar

    [75] Wang K, Zhu Y Q, An Q C, et al. Even sampling photonic-integrated interferometric array for synthetic aperture imaging[J]. Opt Express, 2022, 30(18): 32119−32128. doi: 10.1364/OE.468499

    CrossRef Google Scholar

    [76] Liu G, Wen D S, Song Z X. System design of an optical interferometer based on compressive sensing[J]. Mon Not Roy Astron Soc, 2018, 478(2): 2065−2073. doi: 10.1093/mnras/sty1167

    CrossRef Google Scholar

    [77] Liu G, Wen D S, Song Z X, et al. Optimized design of an emerging optical imager using compressive sensing[J]. Optics Laser Technol, 2019, 110: 158−164. doi: 10.1016/j.optlastec.2018.08.046

    CrossRef Google Scholar

    [78] Chen T B, Zeng X F, Zhang Z Y, et al. REM: a simplified revised entropy image reconstruction for photonics integrated interference imaging system[J]. Opt Commun, 2021, 501: 127341. doi: 10.1016/j.optcom.2021.127341

    CrossRef Google Scholar

    [79] Zhang Z R, Li H Y, Lv G M, et al. Deep learning-based image reconstruction for photonic integrated interferometric imaging[J]. Opt Express, 2022, 30(23): 41359−41373. doi: 10.1364/OE.469582

    CrossRef Google Scholar

    [80] Scott R P, Su T, Ogden C, et al. Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging[C]//Proceedings of 2014 IEEE Photonics Conference, 2014: 1–2. https://doi.org/10.1109/IPCon.2014.7092975.

    Google Scholar

    [81] Thurman S T, Kendrick R L, Duncan A, et al. System design for A SPIDER imager[C]//Proceedings of the Frontiers in Optics 2015, 2015: FM3E. 3. https://doi.org/10.1364/FIO.2015.FM3E.3.

    Google Scholar

    [82] Yoo B S J. Low-mass planar photonic imaging sensor[EB/OL]. (2014-07-29)[2021-01-05]. https://www.nasa.gov/general/low-mass-planar-photonic-imaging-sensor.

    Google Scholar

    [83] Badham K, Kendrick R L, Wuchenich D, et al. Photonic integrated circuit-based imaging system for SPIDER[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim, 2017: 1–5. https://doi.org/10.1109/CLEOPR.2017.8118616.

    Google Scholar

    [84] Su T H, Scott R P, Ogden C, et al. Experimental demonstration of interferometric imaging using photonic integrated circuits[J]. Opt Express, 2017, 25(11): 12653−12665. doi: 10.1364/OE.25.012653

    CrossRef Google Scholar

    [85] Su T H, Liu G Y, Badham K E, et al. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager[J]. Opt Express, 2018, 26(10): 12801−12812. doi: 10.1364/OE.26.012801

    CrossRef Google Scholar

    [86] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Opt Letters, 2007, 32(8): 912−914. doi: 10.1364/OL.32.000912

    CrossRef Google Scholar

    [87] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Opt Express, 2010, 18(2): 962−972. doi: 10.1364/OE.18.000962

    CrossRef Google Scholar

    [88] Katz B, Rosen J. Could SAFE concept be applied for designing a new synthetic aperture telescope?[J]. Opt Express, 2011, 19(6): 4924−4936. doi: 10.1364/OE.19.004924

    CrossRef Google Scholar

    [89] Bulbul A, Rosen J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time[J]. Photonics Res, 2021, 9(7): 1172−1181. doi: 10.1364/PRJ.422381

    CrossRef Google Scholar

    [90] Guan H, Hu Y, Zeng J, et al. Super-resolution imaging by synthetic aperture with incoherent illumination[C]// Computational Imaging VII. SPIE, 2023, 12523: 100-104. https://spie.org/Publications/Proceedings/Paper/10.1117/12.2665635?origin_id=x4323&start_year=2023

    Google Scholar

  • More than 80% of human perception of external information comes from vision, and acquiring more information about the objective world is the eternal goal of human pursuit. Conventional optical imaging is essentially a process of recording and reproducing the intensity signal of a scene in the spatial dimension with direct uniform sampling. Therefore, the resolution and information content of imaging are inevitably constrained by several physical limitations such as optical diffraction limit, and spatial bandwidth product of the imaging system. How to break these physical limitations and obtain higher resolution and broader image field of view has been an eternal topic in this field. Computational optical imaging, by combining front-end optical modulation with back-end signal processing, offers a new approach to surpassing the diffraction limit of imaging systems and realizing super-resolution imaging. Although synthetic aperture techniques first exploited the idea of computational optical imaging to achieve resolution enhancement, they have never been encapsulated as a system in computational optical imaging. In this paper, we introduce the relevant research efforts on improving imaging resolution and expanding the spatial bandwidth product through computational optical synthetic aperture imaging, including the basic theory and technologies based on coherent active synthetic aperture imaging and incoherent passive synthetic aperture imaging. Furthermore, this paper reveals the pressing demand for "incoherent, passive, and beyond-diffraction-limit" imaging, identifies the bottlenecks, and provides an outlook on future research directions and potential technical approaches to address these challenges. The rapidly advancing computational imaging technology has provided new ideas, methods, and theories for far-field synthetic aperture detection. It significantly enhances the imaging efficiency of traditional synthetic aperture techniques and reduces excessive reliance on "interferometric phase acquisition" in synthetic aperture technology. It breaks through the functional/performance boundaries that traditional synthetic aperture technology can achieve and provides possibilities for extensive expansion and extension in the field of far-field synthetic aperture. Within the current computational imaging system, there are still a series of new concepts and new imaging techniques that are being perfected. It can be anticipated that as a branch of computational imaging, far-field optical synthetic aperture detection technology will undoubtedly experience rapid development and bring forth more possibilities in remote sensing, military reconnaissance, and near-Earth satellite detection, among other fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(23)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint