Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115
Citation: Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115

Manipulations and applications of radiating waves using electromagnetic metasurfaces

    Fund Project: Project supported by the National Natural Science Foundation of China (61890544), and the Fundamental Research Funds for the Central Universities (2242023k5002)
More Information
  • Electromagnetic metamaterials are composed of sub-wavelength artificial unit cells with periodic and aperiodic arrangements, which can achieve peculiar properties that natural materials do not have. As the two-dimensional metamaterials, metasurfaces have the advantages of low profile, easy integration and low cost. With the introduction of active elements, sensing elements and intelligent algorithms, metasurfaces further realize real-time programmable and intelligent control of electromagnetic waves. At present, most electromagnetic metasurfaces researches are devoted to the manipulation of reflecting waves and transmitting waves. In fact, electromagnetic metasurfaces also have the strong regulation ability for radiating waves. This paper will introduce the research progress of metasurfaces in regulating the amplitude, phase, polarization of radiating waves systematically. Based on the integration of metasurfaces and feeds and the regulation principle of metasurfaces on radiating electromagnetic waves, this paper focuses on folded array metasurfaces, Fabry-Perot metasurfaces, leaky wave metasurfaces and radiation-type metasurfaces, corresponding to space wave feeding, surface wave feeding, gap coupling feeding, coaxial feeding. The regulation mechanism and applications of these four types of metasurfaces on radiating waves are introduced from the perspectives of passive and active. Finally, the future research directions of electromagnetic metasurfaces in regulating radiating waves are prospected.
  • 加载中
  • [1] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys Rev Lett, 1996, 76(25): 4773−4776. doi: 10.1103/PhysRevLett.76.4773

    CrossRef Google Scholar

    [2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans Microw Theory Techn, 1999, 47(11): 2075−2084. doi: 10.1109/22.798002

    CrossRef Google Scholar

    [3] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys Rev Lett, 2000, 84(18): 4184−4187. doi: 10.1103/PhysRevLett.84.4184

    CrossRef Google Scholar

    [4] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [5] Xu P, Xiao Y F, Huang H X, et al. Dual-wavelength hologram of high transmittance metasurface[J]. Opt Express, 2023, 31(5): 8110−8119. doi: 10.1364/OE.482263

    CrossRef Google Scholar

    [6] Wang X S, Wu J L, Wang R X, et al. Reconstructing polarization multiplexing terahertz holographic images with transmissive metasurface[J]. Appl Sci, 2023, 13(4): 2528. doi: 10.3390/app13042528

    CrossRef Google Scholar

    [7] Heidari M, Sedighy S H, Amirhosseini M K. RCS reduction using grounded multi-height multi-dielectrics metasurfaces[J]. Sci Rep, 2023, 13(1): 3069. doi: 10.1038/s41598-023-27853-4

    CrossRef Google Scholar

    [8] Ha T D, Zhu L, Alsaab N, et al. Optically transparent metasurface radome for rcs reduction and gain enhancement of multifunctional antennas[J]. IEEE Trans Antennas Propag, 2023, 71(1): 67−77. doi: 10.1109/TAP.2022.3215247

    CrossRef Google Scholar

    [9] Faraz Z, Kamal B, Ullah S, et al. High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction[J]. Opt Commun, 2023, 530: 129101. doi: 10.1016/J.OPTCOM.2022.129101

    CrossRef Google Scholar

    [10] Dutta R, Mitra D, Ghosh J. Dual-band multifunctional metasurface for absorption and polarization conversion[J]. Int J RF Microw Comput Aided Eng, 2020, 30(7): e22200. doi: 10.1002/mmce.22200

    CrossRef Google Scholar

    [11] Loncar J, Grbic A, Hrabar S. A reflective polarization converting metasurface at X-band frequencies[J]. IEEE Trans Antennas Propag, 2018, 66(6): 3213−3218. doi: 10.1109/tap.2018.2816784

    CrossRef Google Scholar

    [12] Lin B Q, Huang W Z, Guo J X, et al. A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface[J]. Opt Commun, 2023, 529: 129102. doi: 10.1016/J.OPTCOM.2022.129102

    CrossRef Google Scholar

    [13] 王金金, 朱邱豪, 董建峰. 可调谐手征超表面电磁特性研究进展[J]. 光电工程, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

    CrossRef Google Scholar

    Wang J J, Zhu Q H, Dong J F. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electron Eng, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

    CrossRef Google Scholar

    [14] Liu J Y, Duan Y P, Zhang T, et al. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system[J]. Nano Res, 2022, 15(8): 7498−7505. doi: 10.1007/s12274-022-4528-7

    CrossRef Google Scholar

    [15] Ghosh S, Srivastava K V. A polarization-independent broadband multilayer switchable absorber using active frequency selective surface[J]. IEEE Antennas Wirel Propag Lett, 2017, 16: 3147−3150. doi: 10.1109/lawp.2017.2766100

    CrossRef Google Scholar

    [16] Krasikov S, Tranter A, Bogdanov A, et al. Intelligent metaphotonics empowered by machine learning[J]. Opto-Electron Adv, 2022, 5(3): 210147. doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [17] Yang Y, Zhang X H, Liu K F, et al. Complex-amplitude metasurface design assisted by deep learning[J]. Annal Phys, 2022, 534(9): 2200188. doi: 10.1002/andp.202200188

    CrossRef Google Scholar

    [18] Yang Y, Zhang X H, Liu K F, et al. Exploring the limits of metasurface polarization multiplexing capability based on deep learning[J]. Opt Express, 2023, 31(10): 17065−17075. doi: 10.1364/OE.490002

    CrossRef Google Scholar

    [19] Luo Z J, Ren X Y, Zhou L, et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Adv Funct Mater, 2022, 32(16): 2109544. doi: 10.1002/adfm.202109544

    CrossRef Google Scholar

    [20] Liang J C, Zhang L, Cheng Z W, et al. Flexible beam manipulations by reconfigurable intelligent surface with independent control of amplitude and phase[J]. Front Mater, 2022, 9: 946163. doi: 10.3389/FMATS.2022.946163

    CrossRef Google Scholar

    [21] Zhang X G, Yu Q, Jiang W X, et al. Polarization-controlled dual-programmable metasurfaces[J]. Adv Sci, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382

    CrossRef Google Scholar

    [22] Zhang X G, Jiang W X, Cui T J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Appl Phys Lett, 2018, 113(9): 091601. doi: 10.1063/1.5045718

    CrossRef Google Scholar

    [23] Zhang X G, Tang W X, Jiang W X, et al. Light-controllable digital coding metasurfaces[J]. Adv Sci, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028

    CrossRef Google Scholar

    [24] Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nat Electron, 2020, 3(3): 165−171. doi: 10.1038/s41928-020-0380-5

    CrossRef Google Scholar

    [25] Zhang X G, Sun Y L, Yu Q, et al. Smart doppler cloak operating in broad band and full polarizations[J]. Adv Mater, 2021, 33(17): 2007966. doi: 10.1002/adma.202007966

    CrossRef Google Scholar

    [26] Zhang X G, Sun Y L, Zhu B C, et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications[J]. Light Sci Appl, 2022, 11(1): 126. doi: 10.1038/S41377-022-00817-5

    CrossRef Google Scholar

    [27] Chen L, Ma Q, Luo S S, et al. Touch-programmable metasurface for various electromagnetic manipulations and encryptions[J]. Small, 2022, 18(45): 2203871. doi: 10.1002/smll.202203871

    CrossRef Google Scholar

    [28] Ke J C, Dai J Y, Zhang J W, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light Sci Appl, 2022, 11(1): 273. doi: 10.1038/S41377-022-00973-8

    CrossRef Google Scholar

    [29] Wang S R, Chen M Z, Ke J C, et al. Asynchronous space-time-coding digital metasurface[J]. Adv Sci, 2022, 9(24): 2200106. doi: 10.1002/advs.202200106

    CrossRef Google Scholar

    [30] Chen B W, Wang X R, Li W L, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Sci Adv, 2022, 8(41): eadd1296. doi: 10.1126/sciadv.add1296

    CrossRef Google Scholar

    [31] Zhu R C, Wang J F, Fu X M, et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Appl Mater Interfaces, 2022, 14(42): 48303−48310. doi: 10.1021/ACSAMI.2C15362

    CrossRef Google Scholar

    [32] Huang J. Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept[C]//IEEE Antennas and Propagation Society International Symposium. 1995 Digest, Newport Beach, 1995: 582–585. https://doi.org/10.1109/APS.1995.530086.

    Google Scholar

    [33] Javor R D, Wu X D, Chang K. Design and performance of a microstrip reflectarray antenna[J]. IEEE Trans Antennas Propag, 1995, 43(9): 932−939. doi: 10.1109/8.410208

    CrossRef Google Scholar

    [34] Abd-Elhady M, Hong W, Zhang Y. A Ka-band reflectarray implemented with a single-layer perforated dielectric substrate[J]. IEEE Antennas Wirel Propag Lett, 2012, 11(1): 600−603. doi: 10.1109/lawp.2012.2201128

    CrossRef Google Scholar

    [35] Pilz D, Menzel W. Folded reflectarray antenna[J]. Electron Lett, 1998, 34(9): 832−833. doi: 10.1049/el:19980670

    CrossRef Google Scholar

    [36] Jiang M, Hong W, Zhang Y, et al. A folded reflectarray antenna with a planar SIW slot array antenna as the primary source[J]. IEEE Trans Antennas Propag, 2014, 62(7): 3575−3583. doi: 10.1109/TAP.2014.2317485

    CrossRef Google Scholar

    [37] Yang J W, Shen Y Z, Wang L N, et al. 2-D scannable 40-GHz folded reflectarray fed by SIW slot antenna in single-layered PCB[J]. IEEE Trans Microw Theory Techn, 2018, 66(6): 3129−3135. doi: 10.1109/TMTT.2018.2818698

    CrossRef Google Scholar

    [38] Wang S J, Xu H X, Wang M Z, et al. A low-RCS and high-gain planar circularly polarized cassegrain meta-antenna[J]. IEEE Trans Antennas Propag, 2022, 70(7): 5278−5287. doi: 10.1109/TAP.2022.3161394

    CrossRef Google Scholar

    [39] Xu J, Xu H X, Luo H L, et al. A low-RCS folded reflectarray combining dual-metasurface and rasorber[J]. IEEE Antennas Wirel Propag Lett, 2022, 21(12): 2462−2466. doi: 10.1109/LAWP.2022.3196833

    CrossRef Google Scholar

    [40] Shen Y Z, Yang J W, Meng H F, et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Appl Phys Lett, 2018, 112(14): 141901. doi: 10.1063/1.5023327

    CrossRef Google Scholar

    [41] Miao Z W, Hao Z C, Jin B B, et al. Low-profile 2-D THz airy beam generator using the phase-only reflective metasurface[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1503−1513. doi: 10.1109/TAP.2019.2925290

    CrossRef Google Scholar

    [42] Yang J, Chen S T, Chen M, et al. Folded transmitarray antenna with circular polarization based on metasurface[J]. IEEE Trans Antennas Propag, 2021, 69(2): 806−814. doi: 10.1109/TAP.2020.3016170

    CrossRef Google Scholar

    [43] Li G W, Ge Y H, Chen Z Z. A compact multibeam folded transmitarray antenna at Ku-band[J]. IEEE Antennas Wirel Propag Lett, 2021, 20(5): 808−812. doi: 10.1109/LAWP.2021.3064217

    CrossRef Google Scholar

    [44] Li T J, Wang G M, Cai T, et al. Broadband folded transmitarray antenna with ultralow-profile based on metasurfaces[J]. IEEE Trans Antennas Propag, 2021, 69(10): 7017−7022. doi: 10.1109/TAP.2021.3070679

    CrossRef Google Scholar

    [45] Chen J H, Li G W, Ge Y H, et al. A broadband circularly polarized multi-beam folded transmitarray antenna[J]. Int J RF Microw Comput Aided Eng, 2022, 32(7): e23161. doi: 10.1002/MMCE.23161

    CrossRef Google Scholar

    [46] Fan C, Che W Q, Yang W C, et al. A novel PRAMC-based ultralow-profile transmitarray antenna by using ray tracing principle[J]. IEEE Trans Antennas Propag, 2017, 65(4): 1779−1787. doi: 10.1109/TAP.2017.2670600

    CrossRef Google Scholar

    [47] Li T J, Wang G M, Li H P, et al. Circularly polarized double-folded transmitarray antenna based on receiver-transmitter metasurface[J]. IEEE Trans Antennas Propag, 2022, 70(11): 11161−11166. doi: 10.1109/TAP.2022.3188532

    CrossRef Google Scholar

    [48] Wang Z L, Ge Y H, Pu J X, et al. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications[J]. IEEE Trans Antennas Propag, 2020, 68(9): 6806−6810. doi: 10.1109/TAP.2020.2975265

    CrossRef Google Scholar

    [49] Liu B Y, Wong S W, Tam K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Trans Antennas Propag, 2022, 70(2): 1068−1076. doi: 10.1109/TAP.2021.3111214

    CrossRef Google Scholar

    [50] Li T, Wang R, Sun J W, et al. Characteristic modes-inspired polarization twisting metasurface element for 1-bit folded reflectarray[J]. IEEE Antennas Wirel Propag Lett, 2022, 21(11): 2254−2258. doi: 10.1109/LAWP.2022.3201629

    CrossRef Google Scholar

    [51] Dai J Y, Tang W K, Yang L X, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1618−1627. doi: 10.1109/TAP.2019.2952460

    CrossRef Google Scholar

    [52] Umair H, Latef T B A, Yamada Y, et al. Tilted beam fabry–perot antenna with enhanced gain and broadband low backscattering[J]. Electronics, 2021, 10(3): 267. doi: 10.3390/electronics10030267

    CrossRef Google Scholar

    [53] Li H, Li Y B, Shen J L, et al. Low-profile electromagnetic holography by using coding fabry-perot type metasurface with in-plane feeding[J]. Adv Opt Mater, 2020, 8(9): 1902057. doi: 10.1002/adom.201902057

    CrossRef Google Scholar

    [54] Yang P, Yang R, Li Y C. Dual circularly polarized split beam generation by a metasurface sandwich-based fabry–pérot resonator antenna in Ku-band[J]. IEEE Antennas Wirel Propag Lett, 2021, 20(6): 933−937. doi: 10.1109/LAWP.2021.3067387

    CrossRef Google Scholar

    [55] Long M, Jiang W, Gong S X, et al. Low-RCS frequency reconfigurable antenna with polarization conversion metasurface and phase tunable reflector[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, 2017: 1921–1922. https://doi.org/10.1109/APUSNCURSINRSM.2017.8073003.

    Google Scholar

    [56] Bai L, Zhang X G, Wang Q, et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microw Antennas Propag, 2020, 14(15): 1933−1942. doi: 10.1049/iet-map.2020.0415

    CrossRef Google Scholar

    [57] Huang C, Pan W B, Ma X L, et al. A frequency reconfigurable directive antenna with wideband Low-RCS property[J]. IEEE Trans Antennas Propag, 2016, 64(3): 1173−1178. doi: 10.1109/TAP.2016.2518199

    CrossRef Google Scholar

    [58] Zhang J H, Liu Y, Jia Y T, et al. High-gain fabry–Pérot antenna with reconfigurable scattering patterns based on varactor diodes[J]. IEEE Trans Antennas Propag, 2022, 70(2): 922−930. doi: 10.1109/TAP.2021.3111234

    CrossRef Google Scholar

    [59] Liang J R, Liu J H. A conductor-backed coplanar waveguide leaky-wave antenna with metasurface[C]//2020 IEEE Asia-Pacific Microwave Conference, Hong Kong, China, 2020: 947–949. https://doi.org/10.1109/APMC47863.2020.9331618.

    Google Scholar

    [60] Pandi S, Balanis C A, Birtcher C R. Analysis of wideband multilayered sinusoidally modulated metasurface[J]. IEEE Antennas WirelPropag Lett, 2016, 15(1): 1491−1494. doi: 10.1109/lawp.2015.2514241

    CrossRef Google Scholar

    [61] Wang Q, Zhang X Q, Plum E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Adv Opt Mater, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277

    CrossRef Google Scholar

    [62] Guan C S, Liu J, Ding X M, et al. Dual-polarized multiplexed meta-holograms utilizing coding metasurface[J]. Nanophotonics, 2020, 9(11): 3605−3613. doi: 10.1515/nanoph-2020-0237

    CrossRef Google Scholar

    [63] Lin Z M, Huang L L, Xu Z T, et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Adv Opt Mater, 2019, 7(21): 1900782. doi: 10.1002/adom.201900782

    CrossRef Google Scholar

    [64] Wu L W, Xiao Q, Gou Y, et al. Electromagnetic diffusion and encryption holography integration based on reflection–transmission reconfigurable digital coding metasurface[J]. Adv Opt Mater, 2022, 10(10): 2102657. doi: 10.1002/adom.202102657

    CrossRef Google Scholar

    [65] Xiao Q, Ma Q, Yan T, et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface[J]. Adv Opt Mater, 2021, 9(11): 2002155. doi: 10.1002/ADOM.202002155

    CrossRef Google Scholar

    [66] Li Y B, Cai B G, Cheng Q, et al. Isotropic holographic metasurfaces for dual-functional radiations without mutual interferences[J]. Adv Funct Mater, 2016, 26(1): 29−35. doi: 10.1002/adfm.201503654

    CrossRef Google Scholar

    [67] Shen Y Z, Xue S, Dong G Q, et al. Multiplexing tensor holographic metasurface with surface impedance superposition for manipulating multibeams with multimodes[J]. Adv Opt Mater, 2021, 9(22): 2101340. doi: 10.1002/adom.202101340

    CrossRef Google Scholar

    [68] Wu G B, Dai J Y, Cheng Q, et al. Sideband-free space–time-coding metasurface antennas[J]. Nat Electron, 2022, 5(11): 808−819. doi: 10.1038/s41928-022-00857-0

    CrossRef Google Scholar

    [69] Yurduseven O, Smith D R, Fromenteze T. Design of a reconfigurable metasurface antenna for dynamic near-field focusing[C]//2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, 2018: 1707–1708. https://doi.org/10.1109/APUSNCURSINRSM.2018.8609076.

    Google Scholar

    [70] Tian Y C, Han J Q, Ma X J, et al. Design of 1-bit programmable holographic metasurface for monopulse radar applications[C]//2021 IEEE MTT-S International Wireless Symposium, Nanjing, 2021: 1–3. https://doi.org/10.1109/IWS52775.2021.9499630.

    Google Scholar

    [71] Li T, Chen Z N. Wideband sidelobe-level reduced Ka -band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1356−1365. doi: 10.1109/TAP.2019.2943330

    CrossRef Google Scholar

    [72] Wang J F, Li Y, Jiang Z H, et al. Metantenna: when metasurface meets antenna again[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1332−1347. doi: 10.1109/TAP.2020.2969246

    CrossRef Google Scholar

    [73] Lv Y H, Wang R, Wang B Z, et al. Anisotropic complementary metantenna for low sidelobe radiation and low in-band Co-polarized scattering using characteristic mode analysis[J]. IEEE Trans Antennas Propag, 2022, 70(11): 10177−10186. doi: 10.1109/TAP.2022.3191138

    CrossRef Google Scholar

    [74] Zhang P, Zhang X M, Li L. An optically transparent metantenna for RF wireless energy harvesting[J]. IEEE Trans Antennas Propag, 2022, 70(4): 2550−2560. doi: 10.1109/TAP.2021.3137166

    CrossRef Google Scholar

    [75] Xu P, Jiang W X, Cai X, et al. An integrated coding-metasurface-based array antenna[J]. IEEE Trans Antennas Propag, 2020, 68(2): 891−899. doi: 10.1109/TAP.2019.2944529

    CrossRef Google Scholar

    [76] Xu P, Tian H W, Jiang W X, et al. Phase and polarization modulations using radiation-type metasurfaces[J]. Adv Opt Mater, 2021, 9(16): 2100159. doi: 10.1002/adom.202100159

    CrossRef Google Scholar

    [77] Xu P, Tian H W, Cai X, et al. Radiation-type metasurfaces for advanced electromagnetic manipulation[J]. Adv Funct Mater, 2021, 31(25): 2100569. doi: 10.1002/adfm.202100569

    CrossRef Google Scholar

    [78] Wang Y Z, Pang C, Wang Q M, et al. Phase-only compact radiation-type metasurfaces for customized far-field manipulation[J]. IEEE Trans Microw Theory Techn, 2023, 71(9): 4119−4128. doi: 10.1109/TMTT.2023.3251574

    CrossRef Google Scholar

    [79] Mu Y H, Pang C, Wang Y Z, et al. Complex-amplitude radiation-type metasurface enabling beamform-controlled energy allocation[J]. Photon Res, 2023, 11(6): 986−998. doi: 10.1364/PRJ.482909

    CrossRef Google Scholar

    [80] Bai X D, Zhang F L, Sun L, et al. Radiation-type programmable metasurface for direct manipulation of electromagnetic emission[J]. Laser Photon Rev, 2022, 16(11): 2200140. doi: 10.1002/LPOR.202200140

    CrossRef Google Scholar

    [81] Tian H W, Xu L, Li X, et al. Integrated control of radiations and in-band Co-polarized reflections by a single programmable metasurface[J]. Adv Funct Mater, 2023, 33(36): 2302753. doi: 10.1002/adfm.202302753

    CrossRef Google Scholar

    [82] Zhao J, Yang X, Dai J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. Nat Sci Rev, 2019, 6(2): 231−238. doi: 10.1093/nsr/nwy135

    CrossRef Google Scholar

    [83] Chen M Z, Tang W K, Dai J Y, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. Nat Sci Rev, 2022, 9(1): nwab134. doi: 10.1093/nsr/nwab134

    CrossRef Google Scholar

  • Metamaterials are composed of basic electromagnetic unit cells with sub-wavelength size. Different from natural materials, the properties of metamaterials depend mainly on the structure and arrangement of electromagnetic unit cells. This characteristic can be used to flexibly design metamaterials with unique properties such as negative permittivity, negative permeability, and negative refractive index. As the two-dimensional form of metamaterials, metasurfaces utilize the abrupt phase/amplitude generated by the sudden change of electromagnetic waves on the interface of metasurface to achieve the free control of the incident electromagnetic waves, thus having the advantages of easy design, low profile, and low loss. In recent years, the manipulation of electromagnetic waves by metasurfaces has been widely studied and applied by researchers, such as holographic imaging, radar cross section reduction, polarization conversion, absorption, etc. In practical application scenarios, such as wireless communication, broadband absorption, electromagnetic stealth, etc., metasurfaces are often required to have the ability to dynamically adjust electromagnetic waves, and achieve various functions according to specific working frequency, powers, and polarizations of incident waves. Based on such requirements, researchers have achieved dynamic regulation of metasurfaces by loading active elements on metasurfaces. Active metasurfaces can control the state of active elements through the feeding layer to achieve different phase coverage and amplitude regulation, so that metasurfaces can achieve dynamic switching between multiple functions, improve the ability to modulate electromagnetic waves, and promote the in-depth application and development of the metasurfaces in various fields. In the above work, metasurfaces mainly achieve various electromagnetic functions by regulating reflecting and transmitting waves, metasurface itself is only used as a secondary feed, and additional primary feed is needed, which not only produces overflow loss and edge attenuation, but also leads to increase in the overall profile of the system and decrease in the integration. In fact, electromagnetic metasurfaces also have the strong regulation ability for radiating waves. The feed-integrated metasurfaces solve the above problems due to its ingenious design ideas. Based on the integration of metasurfaces and feeds and the regulation principle of metasurfaces on radiating electromagnetic waves, this paper systematically introduces various types of metasurfaces and their related applications for the direct control of radiating waves from passive to active aspects, such as folded reflectarray/transmitarray metasurfaces, Fabry-Perot metasurfaces, leaky wave metasurfaces and radiation-type metasurfaces, corresponding to air feeding, surface wave feeding, gap coupling feeding, coaxial feeding. The related works of these types of feed-integrated metasurfaces are systematically introduced. Finally, the related researches in this field are summarized and prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint