Citation: | Hu W D, Du X, Liu S Y, et al. Optofluidic refractometric sensor based on quasi-bound states in the continuum in all-dielectric metasurface[J]. Opto-Electron Eng, 2023, 50(9): 230124. doi: 10.12086/oee.2023.230124 |
[1] | Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum[J]. Nat Rev Mater, 2016, 1(9): 16048. doi: 10.1038/natrevmats.2016.48 |
[2] | Fang C Z, Yang Q Y, Yuan Q C, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 2021, 4(6): 200030. doi: 10.29026/oea.2021.200030 |
[3] | Azzam S I, Kildishev A V. Photonic bound states in the continuum: From basics to application[J]. Adv Opt Mater, 2021, 9(1): 2001469. doi: 10.1002/ADOM.202001469 |
[4] | Joseph S, Pandey S, Sarkar S, et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications[J]. Nanophotonics, 2021, 10(17): 4175−4207. doi: 10.1515/nanoph-2021-0387 |
[5] | Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum[J]. Sci Bull, 2019, 64(12): 793−796. doi: 10.1016/j.scib.2018.12.003 |
[6] | Ha S T, Fu Y H, Emani N K, et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nat Nanotechnol, 2018, 13(11): 1042−1047. doi: 10.1038/s41565-018-0245-5 |
[7] | Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum[J]. Nature, 2017, 541(7636): 196−199. doi: 10.1038/nature20799 |
[8] | 戴建明, 张祎帆, 陈宇轩, 等. 液态水辐射源产生太赫兹波的研究进展[J]. 中国激光, 2021, 48(19): 1914003. doi: 10.3788/CJL202148.1914001 Dai J M, Zhang Y F, Chen Y X, et al. Research progress on Terahertz wave generation from liquid water[J]. Chin J Lasers, 2021, 48(19): 1914003. doi: 10.3788/CJL202148.1914001 |
[9] | Xing H Y, Fan J X, Lu D, et al. Terahertz metamaterials for free-space and on-chip applications: From active metadevices to topological photonic crystals[J]. Adv Dev Instrumen, 2022, 2022: 9852503. doi: 10.34133/2022/9852503 |
[10] | Carletti L, Koshelev K, De Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Phys Rev Lett, 2018, 121(3): 033903. doi: 10.1103/PhysRevLett.121.033903 |
[11] | Liu Z J, Wang J Y, Chen B, et al. Giant enhancement of continuous wave second harmonic generation from Few-Layer GaSe coupled to high-Q quasi bound states in the continuum[J]. Nano Lett, 2021, 21(17): 7405−7410. doi: 10.1021/acs.nanolett.1c01975 |
[12] | Liu Z J, Xu Y, Lin Y, et al. High-Q quasin bound states in the continuum for nonlinear metasurfaces[J]. Phys Rev Lett, 2019, 123(25): 253901. doi: 10.1103/PhysRevLett.123.253901 |
[13] | Chen Y, Du W, Zhang Q, et al. Multidimensional nanoscopic chiroptics[J]. Nat Rev Phys, 2022, 4(2): 113−124. doi: 10.1038/s42254-021-00391-6 |
[14] | Luo Y, Chi C, Jiang M J, et al. Plasmonic chiral nanostructures: Chiroptical effects and applications[J]. Adv Opt Mater, 2017, 5(16): 1700040. doi: 10.1002/adom.201700040 |
[15] | Romano S, Zito G, Torino S, et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Res, 2018, 6(7): 726−734. doi: 10.1364/PRJ.6.000726 |
[16] | Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 2019, 13(6): 390−396. doi: 10.1038/s41566-019-0394-6 |
[17] | Leal-Junior A, Avellar L, Biazi V, et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development[J]. Opto-Electron Adv, 2022, 5(10): 210098. doi: 10.29026/oea.2022.210098 |
[18] | Maksimov D N, Gerasimov V S, Romano S, et al. Refractive index sensing with optical bound states in the continuum[J]. Opt Express, 2020, 28(26): 38907−38916. doi: 10.1364/OE.411749 |
[19] | Huo Y Y, Zhang X, Yan M, et al. Highly-sensitive sensor based on toroidal dipole governed by bound state in the continuumin dielectric non-coaxial core-shell cylinder[J]. Opt Express, 2022, 30(11): 19030−19041. doi: 10.1364/OE.456362 |
[20] | Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188−191. doi: 10.1038/nature12289 |
[21] | 王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008 Wang P F, He F Y, Liu J J, et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008 |
[22] | Hong P L, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer[J]. Opto-Electron Adv, 2022, 5(7): 200097. doi: 10.29026/oea.2022.200097 |
[23] | Koshelev K, Lepeshov S, Liu M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Phys Rev Lett, 2018, 121(19): 193903. doi: 10.1103/PhysRevLett.121.193903 |
[24] | Fan J X, Li Z L, Xue Z Q, et al. Hybrid bound states in the continuum in terahertz metasurfaces[J]. Opto-Electronic Sci, 2023, 2(4): 230006. doi: 10.29026/oes.2023.230006 |
[25] | Du X, Shi J, Li G Y, et al. Dual-band bound states in the continum based on hybridization of surface laatice resonces[J]. Nanophotonics, 2022, 11(21): 4843−4853. doi: 10.1515/nanoph-2022-0427 |
[26] | Rodrigo D, Tittl A, Ait-Bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nat Commun, 2018, 9(1): 2160. doi: 10.1038/s41467-018-04594-x |
[27] | Diaz-Diestra D, Thapa B, Beltran-Huarac J, et al. L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosens Bioelectron, 2017, 87: 693−700. doi: 10.1016/j.bios.2016.09.022 |
[28] | Liu G S, Xiong X, Shi H Q, et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photon Res, 2020, 8(4): 448−456. doi: 10.1364/PRJ.382567 |
[29] | 王向贤, 陈函文, 朱剑凯, 等. 金纳米锥阵列与金薄膜耦合结构表面等离子体折射率传感研究[J]. 光电工程, 2022, 49(12): 220135. doi: 10.12086/oee.2022.220135 Wang X X, Chen H W, Zhu J K, et al. Research on surface plasmon refractive index sensing of gold nano cone array andgold film coupling structure[J]. Opto-Electron Eng, 2022, 49(12): 220135. doi: 10.12086/oee.2022.220135 |
[30] | Zhang Y N, Zhao Y, Lv R Q. A review for optical sensors based on photonic crystal cavities[J]. Sensors Actuat A Phys, 2015, 233: 374−389. doi: 10.1016/j.sna.2015.07.025 |
[31] | Baaske M D, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution[J]. Nat Photon, 2016, 10(11): 733−739. doi: 10.1038/nphoton.2016.177 |
[32] | Xu X Y, Chen W J, Zhao G M, et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping[J]. Light Sci Appl, 2018, 7(1): 62. doi: 10.1038/s41377-018-0063-4 |
[33] | David A, Benisty H, Weisbuch C. Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape[J]. Phys Rev B, 2006, 73(7): 075107. doi: 10.1103/PhysRevB.73.075107 |
[34] | Bin-Alam M S, Reshef O, Mamchur Y, et al. Ultra-high-Q resonances in plasmonic metasurfaces[J]. Nat Commun, 2021, 12(1): 974. doi: 10.1038/s41467-021-21196-2 |
[35] | Liu B W, Chen S, Zhang J C, et al. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm[J]. Adv Mater, 2018, 30(12): 1706031. doi: 10.1002/adma.201706031 |
[36] | Yang A K, Hoang T B, Dridi M, et al. Real-time tunable lasing from plasmonic nanocavity arrays[J]. Nat Commun, 2015, 6(1): 6939. doi: 10.1038/ncomms7939 |
[37] | Baur S, Sanders S, Manjavacas A. Hybridization of lattice resonances[J]. ACS Nano, 2018, 12(2): 1618−1629. doi: 10.1021/acsnano.7b08206 |
[38] | Modi K S, Kaur J, Singh S P, et al. All-dielectric complementary-asymmetric-arcs metasurface based refractive index sensor[C]//Frontiers in Optics 2019, Washington, 2019: JW4A. 125.https://doi.org/10.1364/FIO.2019.JW4A.125. |
[39] | Wang Z, Xue Q, Zhao S L, et al. Study on the characteristics of a photonic crystal sensor with rectangular lattice based on bound states in the continuum[J]. J Phys D Appl Phys, 2022, 55(17): 175106. doi: 10.1088/1361-6463/ac4c59 |
[40] | Campione S, Liu S, Basilio L I, et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces[J]. ACS Photonics, 2016, 3(12): 2362−2367. doi: 10.1021/acsphotonics.6b00556 |
[41] | Zhang Q, Wen X L, Li G Y, et al. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities[J]. ACS Nano, 2013, 7(12): 11071−11078. doi: 10.1021/nn4047716 |
[42] | Hu J, Lang T T, Shi G H. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface[J]. Opt Express, 2017, 25(13): 15241−15251. doi: 10.1364/OE.25.015241 |
[43] | Yang Y M, Kravchenko I I, Briggs D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nat Commun, 2014, 5(1): 5753. doi: 10.1038/ncomms6753 |
The bound state in the continuum (BIC) is a special type of optical resonance state that lies in the continuum spectrum of the radiative state, yet remains perfectly localized due to symmetry protection and other topological protection. Since the BIC is completely uncoupled from spatial light, it is necessary in most applications to convert the symmetry-protected BIC and incidental BIC into a quasi-BIC (qBIC) with a high quality factor (Q-factor) by breaking the symmetry and adjusting the system parameters so that it can be excited by the external optical field and can radiate to the far field. The delocalized qBIC inherits the advantages of strong resonance of surface lattice resonance, low absorption loss, and great field enhancement over a large area outside the high refractive nanostructure. For sensing applications based on qBIC all-dielectric metasurfaces, the key performance parameters-sensing sensitivity and performance figure of merit (FOM)-can be effectively improved by high Q factor and great field enhancement in a large range of the object to be sensed. Therefore, we explored a sensor based on delocalized quasi-bound state in the continuum and designed an optofluidic sensor capable of detecting fluids with different refractive indices on an all-dielectric metasurface, which is encapsulated in an optofluidic chamber that provides a large interaction volume with the substance and can be fed with different liquids, gases, and other specific biomarkers through optofluidic channels for different samples delivery to the chip surface is greatly facilitated. By injecting liquids with different refractive indices into the optofluidic chamber of the dielectric metasurface, the device can be used as an optical refractive index sensor by monitoring the refractive index change caused by different liquids, and the structure has been experimentally achieved with a sensitivity of 452 nm/RIU and a FOM above 376.6, demonstrating a good refractive index sensing performance. The sensing performance of our sensor obtained in the experiment is superior to that of other sensors based on qBIC. The superior sensing performance is attributed to the significant field enhancement on the large volume outside the silicon nanopillar, as well as to the high quality factor. It is worth emphasizing that our sensor scheme offers advantages in material selection (transparency and miniaturization) and large sensing area, which is necessary in many cases in the field of biochemical sensing. The many advantages offered by the optofluidic sensors based on delocalized quasi-bound states in the continuum developed in this paper determine that the sensors we fabricated are very versatile and can operate in different spectral ranges. Moreover, the advantages of the optofluidic sensor designed in this paper can be applied to a variety of applications, such as biochemical reaction monitoring, photocatalysis, and trace molecule detection.
(a) Schematic diagram of optofluidic sensing system; (b) Top view of the array structure
(a) Simulated zero-order transmission spectrum of the metasurface at n=1.450 (inset is the electric field distribution in the two resonance modes); (b) Simulated transmission spectra at different refractive indices
(a) Flowchart for metasurface fabrication of silicon nanostructure arrays; (b) Flowchart of PDMS injection molding process; (c) Physical diagram of optofluidic sensor
(a) Schematic diagram of the experimental test system; (b) Experimental test optical platform
(a) Experimental transmission spectra of different refractive index solutions; (b) Linear fit of resonance wavelength and refractive index variation; (c) Experimental Q and FOM values for EQ-qBIC; (d) Experimental Q and FOM values for MD-qBIC