Zhou Y C, Ding W J, Li Z L, et al. Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing[J]. Opto-Electron Eng, 2023, 50(8): 230153. doi: 10.12086/oee.2023.230153
Citation: Zhou Y C, Ding W J, Li Z L, et al. Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing[J]. Opto-Electron Eng, 2023, 50(8): 230153. doi: 10.12086/oee.2023.230153

Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing

    Fund Project: Project supported by National Key Research and Development Program of China (2021YFE0205800), National Natural Science Foundation of China (12204359, 62205252), Natural Science Foundation of Hubei Province (2022CFB641), and China Postdoctoral Science Foundation (2022M722448, 2022TQ0243)
More Information
  • Metasurface can precisely modulate the fundamental properties such as polarization, amplitude, frequency, and phase of optical waves at the subwavelength scale. Based on this background, we propose and experimentally verify a multifunctional metasurface image display technology enabled by merging spatial frequency multiplexing and near- and far-field multiplexing. In near- and far-field multiplexing, the orientation degeneracy of nanostructures is introduced to combine geometric phase modulation and light intensity modulation, which leads to independent coding of near-field grayscale image and far-field holographic image displays by using simulated annealing algorithm. In spatial frequency multiplexing, different spatial frequency components of two images are added together to generate a hybrid image for hologram design. Since people receive different spatial frequency parts when the observation position changes, both high-frequency and low-frequency images can be easily distinguished. In our experiment, three independent images (a grayscale image, a high-frequency image and a low-frequency image) can be displayed simultaneously at different distances, which explains that our multifunctional metasurface has enhanced information storage capacity. This work provides a new path for multifunctional metasurface design, and possesses broad applications in optical encryption, optical anti-counterfeiting, and many other related fields.
  • 加载中
  • [1] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [2] Zhang Y Z, Lin P C, Huo P C, et al. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging[J]. Nano Lett, 2023, 23(7): 2991−2997. doi: 10.1021/acs.nanolett.3c00388

    CrossRef Google Scholar

    [3] Gao H, Wang Y X, Fan X H, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Sci Adv, 2020, 6(28): eaba8595. doi: 10.1126/sciadv.aba8595

    CrossRef Google Scholar

    [4] Shi T, Deng Z L, Geng G Z, et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nat Commun, 2022, 13(1): 4111. doi: 10.1038/s41467-022-31877-1

    CrossRef Google Scholar

    [5] Wang D Y, Liu F F, Liu T, et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 2021, 10(1): 67. doi: 10.1038/s41377-021-00504-x

    CrossRef Google Scholar

    [6] Yu B B, Wen J, Chen L, et al. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces[J]. Photonics Res, 2020, 8(7): 1148−1154. doi: 10.1364/PRJ.390202

    CrossRef Google Scholar

    [7] Xu Z T, Huang L L, Li X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169

    CrossRef Google Scholar

    [8] Huang K, Deng J, Leong H S, et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti‐counterfeiting[J]. Laser Photonics Rev, 2019, 13(5): 1800289. doi: 10.1002/lpor.201800289

    CrossRef Google Scholar

    [9] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [10] Fu R, Chen K X, Li Z L, et al. Metasurface-based nanoprinting: principle, design and advances[J]. Opto-Electron Sci, 2022, 1(10): 220011. doi: 10.29026/oes.2022.220011

    CrossRef Google Scholar

    [11] Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504−1505. doi: 10.1364/OPTICA.3.001504

    CrossRef Google Scholar

    [12] Li Z L, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382−9389. doi: 10.1021/acsnano.7b04868

    CrossRef Google Scholar

    [13] Tan S J, Zhang L, Zhu D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Lett, 2014, 14(7): 4023−4029. doi: 10.1021/nl501460x

    CrossRef Google Scholar

    [14] Sun S, Zhou Z X, Zhang C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445−4452. doi: 10.1021/acsnano.7b00415

    CrossRef Google Scholar

    [15] Gao B F, Ren M X, Wu W, et al. Lithium niobate metasurfaces[J]. Laser Photonics Rev, 2019, 13(5): 1800312. doi: 10.1002/lpor.201800312

    CrossRef Google Scholar

    [16] Yue F Y, Zhang C M, Zang X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light Sci Appl, 2018, 7: 17129. doi: 10.1038/lsa.2017.129

    CrossRef Google Scholar

    [17] Dai Q, Deng L G, Deng J, et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Opt Express, 2019, 27(20): 27927−27935. doi: 10.1364/OE.27.027927

    CrossRef Google Scholar

    [18] 许可,王星儿,范旭浩,等. 超表面全息术:从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [19] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220−226. doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [20] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nat Commun, 2015, 6: 7069. doi: 10.1038/ncomms8069

    CrossRef Google Scholar

    [21] Pahlevaninezhad H, Khorasaninejad M, Huang Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nat Photonics, 2018, 12(9): 540−547. doi: 10.1038/s41566-018-0224-2

    CrossRef Google Scholar

    [22] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light Sci Appl, 2018, 7: 85. doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [23] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [24] Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4(10): 210013. doi: 10.29026/oea.2021.210013

    CrossRef Google Scholar

    [25] Zheng G X, Liu G G, Kenney M G, et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays[J]. Opt Express, 2016, 24(6): 6749−6757. doi: 10.1364/OE.24.006749

    CrossRef Google Scholar

    [26] Li Z L, Zheng G X, He P A, et al. All-silicon nanorod-based Dammann gratings[J]. Opt Lett, 2015, 40(18): 4285−4288. doi: 10.1364/OL.40.004285

    CrossRef Google Scholar

    [27] Wan C W, Yang R, Shi Y Y, et al. Visible-frequency meta-gratings for light steering, beam splitting and absorption tunable functionality[J]. Opt Express, 2019, 27(26): 37318−37326. doi: 10.1364/OE.27.037318

    CrossRef Google Scholar

    [28] Shen Z C, Zhao F, Jin C Q, et al. Monocular metasurface camera for passive single-shot 4D imaging[J]. Nat Commun, 2023, 14(1): 1035. doi: 10.1038/s41467-023-36812-6

    CrossRef Google Scholar

    [29] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [30] Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558−1563. doi: 10.1021/acsphotonics.6b00392

    CrossRef Google Scholar

    [31] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109. doi: 10.1126/science.aas9768

    CrossRef Google Scholar

    [32] Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 2019, 13(6): 390−396. doi: 10.1038/s41566-019-0394-6

    CrossRef Google Scholar

    [33] Bao Y J, Yu Y, Xu H F, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Adv Funct Mater, 2018, 28(51): 1805306. doi: 10.1002/adfm.201805306

    CrossRef Google Scholar

    [34] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [35] Guo J Y, Wang T, Quan B G, et al. Polarization multiplexing for double images display[J]. Opto-Electron Adv, 2019, 2(7): 180029. doi: 10.29026/oea.2019.180029

    CrossRef Google Scholar

    [36] Deng L G, Deng J, Guan Z Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 2020, 9: 101. doi: 10.1038/s41377-020-0327-7

    CrossRef Google Scholar

    [37] Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892−7898. doi: 10.1021/acsnano.0c01469.

    CrossRef Google Scholar

    [38] Deng J, Deng L G, Guan Z Q, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Lett, 2020, 20(3): 1830−1838. doi: 10.1021/acs.nanolett.9b05053

    CrossRef Google Scholar

    [39] Wen D D, Cadusch J J, Meng J J, et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Adv Funct Mater, 2020, 30(3): 1906415. doi: 10.1002/adfm.201906415

    CrossRef Google Scholar

    [40] Deng J, Yang Y, Tao J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237−9246. doi: 10.1021/acsnano.9b03738

    CrossRef Google Scholar

    [41] Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156

    CrossRef Google Scholar

    [42] 杨睿,于千茜,潘一苇,等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    [43] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc Roy Soc A Math Phys Eng Sci, 1984, 392(1802): 45−57. doi: 10.1098/rspa.1984.0023

    CrossRef Google Scholar

    [44] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proc Indian Acad Sci Sec A, 1956, 44(5): 247−262. doi: 10.1007/BF03046050

    CrossRef Google Scholar

    [45] Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [46] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Lett, 2016, 16(11): 7229−7234. doi: 10.1021/acs.nanolett.6b03626

    CrossRef Google Scholar

    [47] Chong K E, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Lett, 2015, 15(8): 5369−5374. doi: 10.1021/acs.nanolett.5b01752

    CrossRef Google Scholar

    [48] Papadopoulos A, Nguyen T, Durmus E, et al. IllusionPIN: shoulder-surfing resistant authentication using hybrid images[J]. IEEE Trans Inf Forensics Secur, 2017, 12(12): 2875−2889. doi: 10.1109/TIFS.2017.2725199

    CrossRef Google Scholar

    [49] Mannos J, Sakrison D. The effects of a visual fidelity criterion of the encoding of images[J]. IEEE Trans Inf Theory, 1974, 20(4): 525−536. doi: 10.1109/TIT.1974.1055250

    CrossRef Google Scholar

    [50] Dai Q, Guan Z Q, Chang S, et al. A single-celled tri-functional metasurface enabled with triple manipulations of light[J]. Adv Funct Mater, 2020, 30(50): 2003990. doi: 10.1002/adfm.202003990

    CrossRef Google Scholar

  • Metasurface, which is capable of flexibly controlling the polarization, amplitude, frequency, and phase of light waves, provides substantial possibilities for the development of high-performance, high-efficiency, and high-integrated optical systems. The precise control of optical properties is achieved mainly by adjusting shapes, geometric parameters, rotation states, multi-atom combination strategies, incident angles, or material refractive indexes of metasurfaces. This feature of multiple design degrees of freedom means that metasurfaces can be utilized for synchronously controlling multiple optical properties, and the information capacity, as well as functionality, can be greatly improved. For example, multiple nanoprinting image switching and encoding can be realized by establishing a coherent pixel design strategy. Near-field nanoprinting and far-field holographic image displays are simultaneously accomplished with a single metasurface, which combines amplitude and phase modulations by introducing orientation degeneracy.

    In this paper, we propose and experimentally verify a multifunctional metasurface enabled by merging spatial frequency multiplexing and near- and far-field multiplexing. In near- and far-field multiplexing, the geometric phase modulation and the light intensity modulation are combined by introducing the orientation degeneracy of nanostructures. A “one-to-four” strategy is established to generate four different phase delays while keeping identical light intensity, then near-field nanoprinting and far-field holographic image displays are both successfully achieved with a single-sized metasurface. As is known, people receive different spatial frequency components of an image when the observation distance changes. Based on this principle, we chose the high-frequency component of an image (P1) and the low-frequency component of another image (P2) as the high-frequency and low-frequency images, and designed their hybrid image to be the target holographic image for spatial frequency multiplexing. In our work, SOI material is used to design and fabricate the multifunctional metasurface, and experimental results verify that three images (a grayscale image, a high-frequency image, and a low-frequency image) can be easily observed at different distances. Specifically, a polarizer and an analyzer are employed to realize specific polarization control for the near-field grayscale image decoding. On the other hand, the circularly polarized laser light is used to reconstruct the holographic image in the far-field, and then another two images can be decoded by high- and low-pass filtering. This work provides a new path for multifunctional metasurface design, and possesses broad applications in optical encryption, optical anti-counterfeiting, and many other related fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(2544) PDF downloads(614) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint