New website getting online, testing
    • 摘要: 针对现有网络难以有效学习点云局部几何信息的问题,提出一种融合点云多分辨率特征的图卷积网络。首先,通过k-最近邻算法对点云构建局部图结构,以更好地表示点云的局部几何结构。其次,基于最远点采样算法提出一个并行通道分支,该分支通过对点云进行下采样来获得不同分辨率的点云,然后对其进行分组处理;为克服点云的稀疏特性,提出一种几何映射模块对分组点云执行正态化操作。最后,提出一种特征融合模块对图特征和多分辨率特征进行聚合,以更有效地获得全局特征。实验使用ModelNet40、ScanObjectNN和ShapeNet Part数据集进行评估,结果表明,提出的网络具有良好的分类与分割性能。

       

      Abstract: To address the problem that existing networks find it difficult to learn local geometric information of point cloud effectively, a graph convolutional network that fuses multi-resolution features of point cloud is proposed. First, the local graph structure of the point cloud is constructed by the k-nearest neighbor algorithm to better represent the local geometric structure of the point cloud. Second, a parallel channel branch is proposed based on the farthest point sampling algorithm, which obtains point clouds with different resolutions by downsampling them and then groups them. To overcome the sparse characteristics of the point cloud, a geometric mapping module is proposed to perform normalization operations on the grouped point cloud. Finally, a feature fusion module is proposed to aggregate graph features and multi-resolution features to obtain global features more effectively. Experiments are evaluated using ModelNet40, ScanObjectNN, and ShapeNet Part datasets. The experimental results show that the proposed network has state-of-the-art classification and segmentation performance.