Citation: | Gong J W, Wang J, Liu J B, et al. Microlens array machining method based on projection lithography[J]. Opto-Electron Eng, 2023, 50(12): 230281. doi: 10.12086/oee.2023.230281 |
[1] | Dong X C, Du C L, Wang C T, et al. Mask-shift filtering for forming microstructures with irregular profile[J]. Appl Phys Lett, 2006, 89(26): 261105. doi: 10.1063/1.2422881 |
[2] | Dong X C, Du C L, Li S H, et al. Control approach for form accuracy of microlenses with continuous relief[J]. Opt Express, 2005, 13(5): 1353−1360. doi: 10.1364/OPEX.13.001353 |
[3] | Zhang W G, Zhu G D, Zhu X Q, et al. Ultra-precision replication technology for fabricating spiral-structure metamaterial[J]. Front Phys, 2020, 8: 267. doi: 10.3389/fphy.2020.00267 |
[4] | Zhang W G, Xia L P, Gao M Y, et al. Laser beam homogenization with randomly distributed freeform cylindrical microlens[J]. Opt Eng, 2020, 59(6): 065103. doi: 10.1117/1.OE.59.6.065103 |
[5] | Zhang S Y, Zhao L X, He Y. Lithography alignment method based on image rotation matching[J]. J Phys Conf Ser, 2021, 1939: 012039. doi: 10.1088/1742-6596/1939/1/012039 |
[6] | 杨清华, 陈大鹏, 叶甜春, 等. 电子束散射角限制投影光刻掩模研制[J]. 光电工程, 2004, 31(4): 13−16. doi: 10.3969/j.issn.1003-501X.2004.04.004 Yang Q H, Chen D P, Ye T C, et al. Development of mask for scattering with angular limitation projection electron-beam lithography[J]. Opto-Electron Eng, 2004, 31(4): 13−16. doi: 10.3969/j.issn.1003-501X.2004.04.004 |
[7] | 王耀辉, 何家玉, 王长涛, 等. 增强型局域表面等离子体共振纳米直写光刻[J]. 光电工程, 2016, 43(1): 71−76. doi: 10.3969/j.issn.1003-501X.2016.01.013 Wang Y H, He J Y, Wang C T, et al. Method investigation of direct-writing nanolithography based on enhanced local surface Plasmon resonance[J]. Opto-Electron Eng, 2016, 43(1): 71−76. doi: 10.3969/j.issn.1003-501X.2016.01.013 |
[8] | Ekberg M, Nikolajeff F, Larsson M, et al. Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography[J]. Appl Opt, 1994, 33(1): 103−107. doi: 10.1364/AO.33.000103 |
[9] | Lee L P, Berger S A, Liepmann D, et al. High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography[J]. Sens Actuators A Phys, 1998, 71(1-2): 144−149. doi: 10.1016/S0924-4247(98)00177-0 |
[10] | Gonin Y, Munnik F, Benninger F, et al. Creating sub-surface channels in PMMA with ion beam lithography in only one step[J]. Appl Surf Sci, 2003, 217(1-4): 289−293. doi: 10.1016/S0169-4332(03)00534-8 |
[11] | 杨顺华, 丁晨良, 朱大钊, 等. 基于飞秒激光的高速双光子刻写技术[J]. 光电工程, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133 Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133 |
[12] | 王洪庆, 温积森, 杨臻垚, 等. 高速并行双光子激光直写光刻系统[J]. 中国激光, 2022, 49(22): 2202009. doi: 10.3788/CJL202249.2202009 Wang H Q, Wen J S, Yang Z Y, et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chin J Lasers, 2022, 49(22): 2202009. doi: 10.3788/CJL202249.2202009 |
[13] | Lee C H, Yoshida H, Miura Y, et al. Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing[J]. Appl Phys Lett, 2008, 93(17): 173509. doi: 10.1063/1.2952765 |
[14] | Liu X Q, Chen Q D, Guan K M, et al. Dry-etching-assisted femtosecond laser machining[J]. Laser Photonics Rev, 2017, 11(3): 1600115. doi: 10.1002/lpor.201600115 |
[15] | Liu X Q, Yu L, Yang S N, et al. Optical nanofabrication of concave microlens arrays[J]. Laser Photonics Rev, 2019, 13(5): 1800272. doi: 10.1002/lpor.201800272 |
[16] | Liu J H, Liu J B, Deng Q Y, et al. Intensity modulation based optical proximity optimization for the maskless lithography[J]. Opt Express, 2020, 28(1): 548−557. doi: 10.1364/OE.381503 |
[17] | Artyukov I, Balakireva L, Bijkerk F, et al. Projection x-ray lithography implemented using point sources[J]. Sov J Quantum Electron, 1992, 22(2): 99−110. |
[18] | 杜婧, 刘俊伯, 全海洋, 等. 光刻投影物镜畸变检测中的位移测量误差分析[J]. 光电工程, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226 Du J, Liu J B, Quan H Y, et al. Displacement measurement analysis in distortion detection of lithography projection objective[J]. Opto-Electron Eng, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226 |
[19] | 李兵, 车尧, 徐辉, 等. 光刻技术科学知识图谱和多维主题分析[J]. 激光与光电子学进展, 2023, 60(23): 2300004. doi: 10.3788/LOP231551 Li B, Che Y, Xu H, et al. Lithography technical science knowledge map and multidimensional theme analysis[J]. Laser Optoelectron Prog, 2023, 60(23): 2300004. doi: 10.3788/LOP231551 |
[20] | Vlad A, Huynen I, Melinte S. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles[J]. Nanotechnology, 2012, 23(28): 285708. doi: 10.1088/0957-4484/23/28/285708 |
[21] | Veldkamp W B. Binary optics: a new approach to optical design and fabrication[J]. Opt News, 1988, 14(12): 29−30. doi: 10.1364/ON.14.12.000029 |
[22] | Chang C Y, Yang S Y, Huang L S, et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Phys Technol, 2006, 48(2): 163−173. doi: 10.1016/j.infrared.2005.10.002 |
[23] | 董小春, 杜春雷, 潘丽, 等. 微透镜列阵浮雕深度控制的新方法[J]. 光电工程, 2003, 30(4): 1−3. doi: 10.3969/j.issn.1003-501X.2003.04.001 Dong X C, Du C L, Pan L, et al. A new method for control relief depth of micro-lens array[J]. Opto-Electron Eng, 2003, 30(4): 1−3. doi: 10.3969/j.issn.1003-501X.2003.04.001 |
[24] | 张为国, 董小春, 杜春雷. 微透镜列阵成像光刻调焦方法[J]. 光电工程, 2010, 37(3): 39−43. doi: 10.3969/j.issn.1003-501X.2010.03.008 Zhang W G, Dong X C, Du C L. Zooming method for microlens array imaging photolithography[J]. Opto-Electron Eng, 2010, 37(3): 39−43. doi: 10.3969/j.issn.1003-501X.2010.03.008 |
[25] | Du C L, Dong X C, Deng Q L, et al. Micro-optical structures formed by a mask moving method[J]. Optoelectron Lett, 2007, 3(2): 95−98. doi: 10.1007/s11801-007-7021-3 |
[26] | Cao A X, Wang J Z, Pang H, et al. Design and fabrication of a multifocal bionic compound eye for imaging[J]. Bioinspir Biomim, 2018, 13(2): 026012. doi: 10.1088/1748-3190/aaa901 |
[27] | Im B, Prasetyo F D, Yudistira H T, et al. Drop-on-demand electrohydrodynamic jet printing of microlens array on flexible substrates[J]. ACS Appl Polym Mater, 2023, 5(3): 2264−2271. doi: 10.1021/acsapm.3c00054 |
[28] | 赵瑞, 彭超, 张凯, 等. 介电润湿液体透镜仿生复眼的设计与仿真[J]. 光电工程, 2021, 48(2): 49−56. doi: 10.12086/oee.2021.200120 Zhao R, Peng C, Zhang K, et al. Design and simulation of bionic compound eye with electrowetting liquid lens[J]. Opto-Electron Eng, 2021, 48(2): 49−56. doi: 10.12086/oee.2021.200120 |
[29] | Shi L F, Du C L, Dong X C, et al. Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure[J]. Appl Opt, 2007, 46(34): 8346−8350. doi: 10.1364/AO.46.008346 |
[30] | 史立芳, 曹阿秀, 刘艳, 等. 大视场人工复眼结构设计方法与实验[J]. 光电工程, 2013, 40(7): 27−33. doi: 10.3969/j.issn.1003-501X.2013.07.005 Shi L F, Cao A X, Liu Y, et al. Design and experiments of artificial compound eye with large view field[J]. Opto-Electron Eng, 2013, 40(7): 27−33. doi: 10.3969/j.issn.1003-501X.2013.07.005 |
As a typical microoptical component, a microlens array has the advantages of high optical diffraction efficiency, good dispersion performance and a large degree of freedom, and is widely used in many fields such as biomedicine, photonics, communication and sensors. The feature size of microlens arrays has been reduced to the submicron level, increasing manufacturing difficulty with the rapid development of information technology. The traditional lithography technology is mainly used for the fabrication of planar two-dimensional structures, but it can not meet the high precision manufacturing requirements of microlens arrays. Among them, the proximity/contact lithography, as a typical micro and nano machining technology, is limited by resolution, and it is difficult to ensure the requirements of sub-micron machining accuracy and freedom. Therefore, efficient micro and nano machining methods are the key to fabricating high-precision microlens arrays. A method for preparing microlens arrays based on projection lithography was proposed, and Microlens arrays of various calibers and different surface roughness were successfully prepared by the method. The projection lithography technology is an imaging system that increases the reduction magnification between the mask and the substrate, so that the mask and the substrate are separated, and the exposure requirements of the bottom line are achieved while reducing the difficulty and cost of mask preparation. The method employs a 0.2× projection objective lens to reduce the manufacturing cost of masks and realize the preparation of microlens arrays with different calibers. We achieve superior surface figure accuracy while reducing the complexity of mask preparation by employing a projection-based mask-shift filtering technique. Four kinds of microlens arrays with different calibers, 50 μm, 100 μm, 300 μm and 500 μm, were prepared. The machining accuracy of the surface morphology reaches the sub-micron level and the surface roughness reaches the nanometer level. The experimental results show that this method has great potential in the fabrication of microlens arrays, and can achieve lower line width and higher surface profile accuracy than traditional methods.
The mask moving method based on projection lithography. (a) Working principle of the projection exposure system; (b) Moving mask graphic structure; (c) 3D Wiener structure after processing
Principle of mask moving filtering based on projection lithography. (a) The equally divided objective function; (b) Microstrip area outline function; (c) The divided feature pattern; (d) Micrographic structure after exposure
The micrographics and corresponding mask plate graphics are recovered by using mask moving filtering technology under different conditions when (a), (d) S >> T; (b), (e) S << T; (c), (f) S ≈ T.
Mask graphics of two processing methods. (a-d) Mask patterns based on proximity lithography mask moving method, with diameters of 50 μm, 100 μm, 300 μm and 500 μm, respectively; (e-h) Mask patterns based on the projection lithography mask movement method, with diameters of 250 μm, 500 μm, 1500 μm, 2500 μm, respectively
Surface shape measurement results of microlenses of different calibers processed by traditional methods. (a) 500 μm aperture; (b) 300 μm aperture; (c) 100 μm aperture; (d) 50 μm aperture
Surface shape results of microlens with different calibers fabricated by projection lithography. (a) 500 μm aperture; (b) 300 μm aperture; (c) 100 μm aperture; (d) 50 μm aperture
3D profilometer scanning results of traditional experimental results. (a-d) are the measurement results of 500 µm, 300 µm, 100 µm and 50 µm, respectively
3D profilometer scanning results of experimental results of projection lithography method. (a-d) are the measurement results of 500 µm, 300 µm, 100 µm and 50 µm, respectively