Gong J W, Wang J, Liu J B, et al. Microlens array machining method based on projection lithography[J]. Opto-Electron Eng, 2023, 50(12): 230281. doi: 10.12086/oee.2023.230281
Citation: Gong J W, Wang J, Liu J B, et al. Microlens array machining method based on projection lithography[J]. Opto-Electron Eng, 2023, 50(12): 230281. doi: 10.12086/oee.2023.230281

Microlens array machining method based on projection lithography

    Fund Project:
More Information
  • A method for preparing microlens arrays based on projection lithography was proposed, and microlens arrays of various calibers and different surface roughness were successfully prepared by the method. The method employs a 0.2× projection objective lens to reduce the manufacturing cost of masks and realize the preparation of microlens arrays with different calibers. We achieve superior surface figure accuracy while reducing the complexity of mask preparation by employing a projection-based mask-shift filtering technique. Four kinds of microlens arrays with different calibers, 50 μm, 100 μm, 300 μm and 500 μm, were prepared. The machining accuracy of the surface morphology reaches the sub-micron level and the surface roughness reaches the nanometer level. The experimental results show that this method has great potential in the fabrication of microlens arrays, and can achieve lower line width and higher surface profile accuracy than traditional methods.
  • 加载中
  • [1] Dong X C, Du C L, Wang C T, et al. Mask-shift filtering for forming microstructures with irregular profile[J]. Appl Phys Lett, 2006, 89(26): 261105. doi: 10.1063/1.2422881

    CrossRef Google Scholar

    [2] Dong X C, Du C L, Li S H, et al. Control approach for form accuracy of microlenses with continuous relief[J]. Opt Express, 2005, 13(5): 1353−1360. doi: 10.1364/OPEX.13.001353

    CrossRef Google Scholar

    [3] Zhang W G, Zhu G D, Zhu X Q, et al. Ultra-precision replication technology for fabricating spiral-structure metamaterial[J]. Front Phys, 2020, 8: 267. doi: 10.3389/fphy.2020.00267

    CrossRef Google Scholar

    [4] Zhang W G, Xia L P, Gao M Y, et al. Laser beam homogenization with randomly distributed freeform cylindrical microlens[J]. Opt Eng, 2020, 59(6): 065103. doi: 10.1117/1.OE.59.6.065103

    CrossRef Google Scholar

    [5] Zhang S Y, Zhao L X, He Y. Lithography alignment method based on image rotation matching[J]. J Phys Conf Ser, 2021, 1939: 012039. doi: 10.1088/1742-6596/1939/1/012039

    CrossRef Google Scholar

    [6] 杨清华, 陈大鹏, 叶甜春, 等. 电子束散射角限制投影光刻掩模研制[J]. 光电工程, 2004, 31(4): 13−16. doi: 10.3969/j.issn.1003-501X.2004.04.004

    CrossRef Google Scholar

    Yang Q H, Chen D P, Ye T C, et al. Development of mask for scattering with angular limitation projection electron-beam lithography[J]. Opto-Electron Eng, 2004, 31(4): 13−16. doi: 10.3969/j.issn.1003-501X.2004.04.004

    CrossRef Google Scholar

    [7] 王耀辉, 何家玉, 王长涛, 等. 增强型局域表面等离子体共振纳米直写光刻[J]. 光电工程, 2016, 43(1): 71−76. doi: 10.3969/j.issn.1003-501X.2016.01.013

    CrossRef Google Scholar

    Wang Y H, He J Y, Wang C T, et al. Method investigation of direct-writing nanolithography based on enhanced local surface Plasmon resonance[J]. Opto-Electron Eng, 2016, 43(1): 71−76. doi: 10.3969/j.issn.1003-501X.2016.01.013

    CrossRef Google Scholar

    [8] Ekberg M, Nikolajeff F, Larsson M, et al. Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography[J]. Appl Opt, 1994, 33(1): 103−107. doi: 10.1364/AO.33.000103

    CrossRef Google Scholar

    [9] Lee L P, Berger S A, Liepmann D, et al. High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography[J]. Sens Actuators A Phys, 1998, 71(1-2): 144−149. doi: 10.1016/S0924-4247(98)00177-0

    CrossRef Google Scholar

    [10] Gonin Y, Munnik F, Benninger F, et al. Creating sub-surface channels in PMMA with ion beam lithography in only one step[J]. Appl Surf Sci, 2003, 217(1-4): 289−293. doi: 10.1016/S0169-4332(03)00534-8

    CrossRef Google Scholar

    [11] 杨顺华, 丁晨良, 朱大钊, 等. 基于飞秒激光的高速双光子刻写技术[J]. 光电工程, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

    CrossRef Google Scholar

    Yang S H, Ding C L, Zhu D Z, et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electron Eng, 2023, 50(3): 220133. doi: 10.12086/oee.2023.220133

    CrossRef Google Scholar

    [12] 王洪庆, 温积森, 杨臻垚, 等. 高速并行双光子激光直写光刻系统[J]. 中国激光, 2022, 49(22): 2202009. doi: 10.3788/CJL202249.2202009

    CrossRef Google Scholar

    Wang H Q, Wen J S, Yang Z Y, et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chin J Lasers, 2022, 49(22): 2202009. doi: 10.3788/CJL202249.2202009

    CrossRef Google Scholar

    [13] Lee C H, Yoshida H, Miura Y, et al. Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing[J]. Appl Phys Lett, 2008, 93(17): 173509. doi: 10.1063/1.2952765

    CrossRef Google Scholar

    [14] Liu X Q, Chen Q D, Guan K M, et al. Dry-etching-assisted femtosecond laser machining[J]. Laser Photonics Rev, 2017, 11(3): 1600115. doi: 10.1002/lpor.201600115

    CrossRef Google Scholar

    [15] Liu X Q, Yu L, Yang S N, et al. Optical nanofabrication of concave microlens arrays[J]. Laser Photonics Rev, 2019, 13(5): 1800272. doi: 10.1002/lpor.201800272

    CrossRef Google Scholar

    [16] Liu J H, Liu J B, Deng Q Y, et al. Intensity modulation based optical proximity optimization for the maskless lithography[J]. Opt Express, 2020, 28(1): 548−557. doi: 10.1364/OE.381503

    CrossRef Google Scholar

    [17] Artyukov I, Balakireva L, Bijkerk F, et al. Projection x-ray lithography implemented using point sources[J]. Sov J Quantum Electron, 1992, 22(2): 99−110.

    Google Scholar

    [18] 杜婧, 刘俊伯, 全海洋, 等. 光刻投影物镜畸变检测中的位移测量误差分析[J]. 光电工程, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226

    CrossRef Google Scholar

    Du J, Liu J B, Quan H Y, et al. Displacement measurement analysis in distortion detection of lithography projection objective[J]. Opto-Electron Eng, 2023, 50(2): 220226. doi: 10.12086/oee.2023.220226

    CrossRef Google Scholar

    [19] 李兵, 车尧, 徐辉, 等. 光刻技术科学知识图谱和多维主题分析[J]. 激光与光电子学进展, 2023, 60(23): 2300004. doi: 10.3788/LOP231551

    CrossRef Google Scholar

    Li B, Che Y, Xu H, et al. Lithography technical science knowledge map and multidimensional theme analysis[J]. Laser Optoelectron Prog, 2023, 60(23): 2300004. doi: 10.3788/LOP231551

    CrossRef Google Scholar

    [20] Vlad A, Huynen I, Melinte S. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles[J]. Nanotechnology, 2012, 23(28): 285708. doi: 10.1088/0957-4484/23/28/285708

    CrossRef Google Scholar

    [21] Veldkamp W B. Binary optics: a new approach to optical design and fabrication[J]. Opt News, 1988, 14(12): 29−30. doi: 10.1364/ON.14.12.000029

    CrossRef Google Scholar

    [22] Chang C Y, Yang S Y, Huang L S, et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Phys Technol, 2006, 48(2): 163−173. doi: 10.1016/j.infrared.2005.10.002

    CrossRef Google Scholar

    [23] 董小春, 杜春雷, 潘丽, 等. 微透镜列阵浮雕深度控制的新方法[J]. 光电工程, 2003, 30(4): 1−3. doi: 10.3969/j.issn.1003-501X.2003.04.001

    CrossRef Google Scholar

    Dong X C, Du C L, Pan L, et al. A new method for control relief depth of micro-lens array[J]. Opto-Electron Eng, 2003, 30(4): 1−3. doi: 10.3969/j.issn.1003-501X.2003.04.001

    CrossRef Google Scholar

    [24] 张为国, 董小春, 杜春雷. 微透镜列阵成像光刻调焦方法[J]. 光电工程, 2010, 37(3): 39−43. doi: 10.3969/j.issn.1003-501X.2010.03.008

    CrossRef Google Scholar

    Zhang W G, Dong X C, Du C L. Zooming method for microlens array imaging photolithography[J]. Opto-Electron Eng, 2010, 37(3): 39−43. doi: 10.3969/j.issn.1003-501X.2010.03.008

    CrossRef Google Scholar

    [25] Du C L, Dong X C, Deng Q L, et al. Micro-optical structures formed by a mask moving method[J]. Optoelectron Lett, 2007, 3(2): 95−98. doi: 10.1007/s11801-007-7021-3

    CrossRef Google Scholar

    [26] Cao A X, Wang J Z, Pang H, et al. Design and fabrication of a multifocal bionic compound eye for imaging[J]. Bioinspir Biomim, 2018, 13(2): 026012. doi: 10.1088/1748-3190/aaa901

    CrossRef Google Scholar

    [27] Im B, Prasetyo F D, Yudistira H T, et al. Drop-on-demand electrohydrodynamic jet printing of microlens array on flexible substrates[J]. ACS Appl Polym Mater, 2023, 5(3): 2264−2271. doi: 10.1021/acsapm.3c00054

    CrossRef Google Scholar

    [28] 赵瑞, 彭超, 张凯, 等. 介电润湿液体透镜仿生复眼的设计与仿真[J]. 光电工程, 2021, 48(2): 49−56. doi: 10.12086/oee.2021.200120

    CrossRef Google Scholar

    Zhao R, Peng C, Zhang K, et al. Design and simulation of bionic compound eye with electrowetting liquid lens[J]. Opto-Electron Eng, 2021, 48(2): 49−56. doi: 10.12086/oee.2021.200120

    CrossRef Google Scholar

    [29] Shi L F, Du C L, Dong X C, et al. Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure[J]. Appl Opt, 2007, 46(34): 8346−8350. doi: 10.1364/AO.46.008346

    CrossRef Google Scholar

    [30] 史立芳, 曹阿秀, 刘艳, 等. 大视场人工复眼结构设计方法与实验[J]. 光电工程, 2013, 40(7): 27−33. doi: 10.3969/j.issn.1003-501X.2013.07.005

    CrossRef Google Scholar

    Shi L F, Cao A X, Liu Y, et al. Design and experiments of artificial compound eye with large view field[J]. Opto-Electron Eng, 2013, 40(7): 27−33. doi: 10.3969/j.issn.1003-501X.2013.07.005

    CrossRef Google Scholar

  • As a typical microoptical component, a microlens array has the advantages of high optical diffraction efficiency, good dispersion performance and a large degree of freedom, and is widely used in many fields such as biomedicine, photonics, communication and sensors. The feature size of microlens arrays has been reduced to the submicron level, increasing manufacturing difficulty with the rapid development of information technology. The traditional lithography technology is mainly used for the fabrication of planar two-dimensional structures, but it can not meet the high precision manufacturing requirements of microlens arrays. Among them, the proximity/contact lithography, as a typical micro and nano machining technology, is limited by resolution, and it is difficult to ensure the requirements of sub-micron machining accuracy and freedom. Therefore, efficient micro and nano machining methods are the key to fabricating high-precision microlens arrays. A method for preparing microlens arrays based on projection lithography was proposed, and Microlens arrays of various calibers and different surface roughness were successfully prepared by the method. The projection lithography technology is an imaging system that increases the reduction magnification between the mask and the substrate, so that the mask and the substrate are separated, and the exposure requirements of the bottom line are achieved while reducing the difficulty and cost of mask preparation. The method employs a 0.2× projection objective lens to reduce the manufacturing cost of masks and realize the preparation of microlens arrays with different calibers. We achieve superior surface figure accuracy while reducing the complexity of mask preparation by employing a projection-based mask-shift filtering technique. Four kinds of microlens arrays with different calibers, 50 μm, 100 μm, 300 μm and 500 μm, were prepared. The machining accuracy of the surface morphology reaches the sub-micron level and the surface roughness reaches the nanometer level. The experimental results show that this method has great potential in the fabrication of microlens arrays, and can achieve lower line width and higher surface profile accuracy than traditional methods.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint