Wang L F, Hu Y W, Zhang Z G, et al. Rapid manufacturing technology for aspheric optical elements[J]. Opto-Electron Eng, 2024, 51(1): 230171. doi: 10.12086/oee.2024.230171
Citation: Wang L F, Hu Y W, Zhang Z G, et al. Rapid manufacturing technology for aspheric optical elements[J]. Opto-Electron Eng, 2024, 51(1): 230171. doi: 10.12086/oee.2024.230171

Rapid manufacturing technology for aspheric optical elements

    Fund Project: Project supported by Jilin Provincial Natural Fund (20220101124JC)
More Information
  • In order to meet the market demand of the optical industry, the rapid manufacturing technology of aspheric optical elements is one of the best solutions to realize low cost, mass production, and high precision production. This paper mainly introduces the rapid manufacturing technology of aspheric optical elements, including precision optical glass molding technology and precision optical plastic injection molding technology, and compares the two technologies with the manufacturing technology of other aspheric optical elements. This paper also expounds on the types of mold materials, mold processing methods, molding materials, molding process, etc. Finally, the development status of rapid manufacturing technology of aspheric optical elements in recent years is summarized, and future development has prospected.
  • 加载中
  • [1] 焦松峰, 谢启明, 刘尧, 等. 光学非球面面形轮廓检测技术[J]. 红外技术, 2023, 45(5): 534−540.

    Google Scholar

    Jiao S F, Xie Q M, Liu Y, et al. Optical aspheric surface profile testing technology[J]. Infrared Technol, 2023, 45(5): 534−540.

    Google Scholar

    [2] Yin S H, Jia H P, Zhang G H, et al. Review of small aspheric glass lens molding technologies[J]. Front Mech Eng, 2017, 12(1): 66−76. doi: 10.1007/s11465-017-0417-2

    CrossRef Google Scholar

    [3] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学, 2022, 15(2): 161−186. doi: 10.37188/CO.2021-0143

    CrossRef Google Scholar

    Liang Z J, Yang Y Y, Zhao H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chin Opt, 2022, 15(2): 161−186. doi: 10.37188/CO.2021-0143

    CrossRef Google Scholar

    [4] Ding Y, Liu X, Zheng Z R, et al. Freeform LED lens for uniform illumination[J]. Opt Express, 2008, 16(17): 12958−12966. doi: 10.1364/OE.16.012958

    CrossRef Google Scholar

    [5] Qandil H, Wang S P, Zhao W H. Application-based design of the Fresnel lens solar concentrator[J]. Renewables Wind Water Solar, 2019, 6(1): 3. doi: 10.1186/s40807-019-0057-8

    CrossRef Google Scholar

    [6] Lee S W, Joh H H, Hong J S, et al. Birefringent analysis of plastic lens injection molding for mobile phone camera[J]. Trans Mater Process, 2011, 20(1): 54−59. doi: 10.5228/KSTP.2011.20.1.54

    CrossRef Google Scholar

    [7] Heiney A J, Jiang C L, Reysen W H. Polymer molded lenses for optoelectronics[C]//1995 Proceedings. 45th Electronic Components and Technology Conference, Las Vegas, 1995: 170‒176. https://doi.org/10.1109/ECTC.1995.514379.

    Google Scholar

    [8] Milster T D, Upton R S, Luo H. Objective lens design for multiple-layer optical data storage[J]. Proc SPIE, 1997, 3109: 142−149. doi: 10.1117/12.280685

    CrossRef Google Scholar

    [9] La M, Park S M, Kim W, et al. Injection molded plastic lens for relay lens system and optical imaging probe[J]. Int J Precis Eng Manuf, 2015, 16(8): 1801−1808. doi: 10.1007/s12541-015-0235-6

    CrossRef Google Scholar

    [10] Hatefi S, Abou-El-Hossein K. Review of single-point diamond turning process in terms of ultra-precision optical surface roughness[J]. Int J Adv Manuf Technol, 2020, 106(5): 2167−2187. doi: 10.1007/s00170-019-04700-3

    CrossRef Google Scholar

    [11] Yuan J L, Lyu B H, Hang W, et al. Review on the progress of ultra-precision machining technologies[J]. Front Mech Eng, 2017, 12(2): 158−180. doi: 10.1007/s11465-017-0455-9

    CrossRef Google Scholar

    [12] 聂兰舰, 王玉芬, 向在奎, 等. 高性能光学合成石英玻璃的制备和应用[J]. 光学 精密工程, 2016, 24(12): 2916−2924. doi: 10.3788/OPE.20162412.2916

    CrossRef Google Scholar

    Nie L J, Wang Y F, Xiang Z K, et al. Preparation and application of high-performance synthetic optical fused silica glass[J]. Opt Precision Eng, 2016, 24(12): 2916−2924. doi: 10.3788/OPE.20162412.2916

    CrossRef Google Scholar

    [13] 花宁, 李怀阳, 王友军, 等. 石英玻璃晶圆的加工工艺[J]. 红外与激光工程, 2016, 45(S2): S221003. doi: 10.3788/IRLA201645.S221003

    CrossRef Google Scholar

    Hua N, Li H Y, Wang Y J, et al. Processing techniques of quartz glass wafer[J]. Infrared Laser Eng, 2016, 45(S2): S221003. doi: 10.3788/IRLA201645.S221003

    CrossRef Google Scholar

    [14] 汪志斌, 李军琪, 张峰, 等. 硫系红外玻璃精密模压模具有限元仿真设计[J]. 光电工程, 2016, 43(5): 53−58. doi: 10.3969/j.issn.1003-501X.2016.05.009

    CrossRef Google Scholar

    Wang Z B, Li J Q, Zhang F, et al. The design of mold with simulation for chalcogenide glass precision molding[J]. Opto-Electron Eng, 2016, 43(5): 53−58. doi: 10.3969/j.issn.1003-501X.2016.05.009

    CrossRef Google Scholar

    [15] 成都光明光电股份有限公司[EB/OL]. [2023-10-14]. http://www.cdgmgd.com/.

    Google Scholar

    [16] Zhang A Z, Youngworth R N. Review of Optical Manufacturing 2000 to 2020[M]. Bellingham: SPIE, 2021: 223–224. https://doi.org/10.1117/3.2599940.ch1.

    Google Scholar

    [17] Masuda J, Yan J W, Tashiro T, et al. Microstructural and topographical changes of Ni-P plated moulds in glass lens pressing[J]. Int J Surf Sci Eng, 2009, 3(1-2): 86−102. doi: 10.1504/IJSURFSE.2009.024363

    CrossRef Google Scholar

    [18] Zhang Z Y, Peng H M, Yan J W. Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools[J]. Int J Mach Tools Manuf, 2013, 65: 99−106. doi: 10.1016/j.ijmachtools.2012.10.007

    CrossRef Google Scholar

    [19] Yan J W, Oowada T, Zhou T F, et al. Precision machining of microstructures on electroless-plated NiP surface for molding glass components[J]. J Mater Process Technol, 2009, 209(10): 4802−4808. doi: 10.1016/j.jmatprotec.2008.12.008

    CrossRef Google Scholar

    [20] Yan J W, Zhang Z Y, Kuriyagawa T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide[J]. Int J Mach Tools Manuf, 2009, 49(5): 366−374. doi: 10.1016/j.ijmachtools.2008.12.007

    CrossRef Google Scholar

    [21] He P, Li L K, Li H, et al. Compression molding of glass freeform optics using diamond machined silicon mold[J]. Manuf Lett, 2014, 2(2): 17−20. doi: 10.1016/j.mfglet.2013.12.002

    CrossRef Google Scholar

    [22] 尹韶辉, 唐昆, 朱勇建, 等. 小口径玻璃透镜热压成形模具的超精密微细磨削加工[J]. 中国机械工程, 2008, 19(23): 2790−2792. doi: 10.3321/j.issn:1004-132X.2008.23.005

    CrossRef Google Scholar

    Yin S H, Tang K, Zhu Y J, et al. Fabrication of micro glass lens mould by using ultra-precision micro-grinding process[J]. China Mech Eng, 2008, 19(23): 2790−2792. doi: 10.3321/j.issn:1004-132X.2008.23.005

    CrossRef Google Scholar

    [23] 范亚卓, 鞠鹤, 蔡天晓, 等. Pt-Ir涂层阳极的制备及在电解水中的应用[J]. 湿法冶金, 2009, 28(2): 109−111. doi: 10.3969/j.issn.1009-2617.2009.02.012

    CrossRef Google Scholar

    Fan Y Z, Ju H, Cai T X, et al. Preparation of Pt-Ir coating anode and its application in electrolyzed water[J]. Hydrometall China, 2009, 28(2): 109−111. doi: 10.3969/j.issn.1009-2617.2009.02.012

    CrossRef Google Scholar

    [24] Ren X, Leng L, Cao Y Q, et al. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis[J]. Chin J Chem Eng, 2022, 45(5): 171−181. doi: 10.1016/j.cjche.2021.07.015

    CrossRef Google Scholar

    [25] Yi A Y, Jain A. Compression molding of aspherical glass lenses–a combined experimental and numerical analysis[J]. J Am Ceram Soc, 2005, 88(3): 579−586. doi: 10.1111/j.1551-2916.2005.00137.x

    CrossRef Google Scholar

    [26] Jain A, Yi A Y. Numerical modeling of viscoelastic stress relaxation during glass lens forming process[J]. J Am Ceram Soc, 2005, 88(3): 530−535. doi: 10.1111/j.1551-2916.2005.00114.x

    CrossRef Google Scholar

    [27] Su L J, Yi A Y. Finite element calculation of refractive index in optical glass undergoing viscous relaxation and analysis of the effects of cooling rate and material properties[J]. Int J Appl Glass Sci, 2012, 3(3): 263−274. doi: 10.1111/j.2041-1294.2011.00074.x

    CrossRef Google Scholar

    [28] Su L J, Wang F, He P, et al. An integrated solution for mold shape modification in precision glass molding to compensate refractive index change and geometric deviation[J]. Opt Lasers Eng, 2014, 53: 98−103. doi: 10.1016/j.optlaseng.2013.08.016

    CrossRef Google Scholar

    [29] Zhang L, Zhou W C, Naples N J, et al. Investigation of index change in compression molding of As40Se50S10 chalcogenide glass[J]. Appl Opt, 2018, 57(15): 4245−4252. doi: 10.1364/AO.57.004245

    CrossRef Google Scholar

    [30] Zhou J, Yu J F, Lee L J, et al. Stress relaxation and refractive index change of As2S3 in compression molding[J]. Int J Appl Glass Sci, 2017, 8(3): 255−265. doi: 10.1111/ijag.12244

    CrossRef Google Scholar

    [31] Yan J W, Zhou T F, Masuda J, et al. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis[J]. Precis Eng, 2009, 33(2): 150−159. doi: 10.1016/j.precisioneng.2008.05.005

    CrossRef Google Scholar

    [32] Yin S H, Zhu K J, Wang Y F, et al. Numerical simulation on two-step isothermal glass lens molding[J]. Adv Mater Res, 2010, 126–128: 564−569. doi: 10.4028/www.scientific.net/AMR.126-128.564

    CrossRef Google Scholar

    [33] Liu Y, Xing Y T, Li C, et al. Analysis of lens fracture in precision glass molding with the finite element method[J]. Appl Opt, 2021, 60(26): 8022−8030. doi: 10.1364/AO.436359

    CrossRef Google Scholar

    [34] Liu Y, Xing Y T, Yang C, et al. Simulation of heat transfer in the progress of precision glass molding with a finite element method for chalcogenide glass[J]. Appl Opt, 2019, 58(27): 7311−7318. doi: 10.1364/AO.58.007311

    CrossRef Google Scholar

    [35] Fu H, Xue C X, Liu Y, et al. Prediction model of residual stress during precision glass molding of optical lenses[J]. Appl Opt, 2022, 61(5): 1194−1202. doi: 10.1364/AO.448010

    CrossRef Google Scholar

    [36] Narayanaswamy O S. A model of structural relaxation in glass[J]. J Am Ceram Soc, 1971, 54(10): 491−498. doi: 10.1111/j.1151-2916.1971.tb12186.x

    CrossRef Google Scholar

    [37] Angle M A, Blair G E, Maier C C. Method for molding glass lenses: US3833347A[P]. 1974-09-03.

    Google Scholar

    [38] Budinski M K, Pulver J C, Nelson J J, et al. Glass mold material for precision glass molding: US6363747B1[P]. 2002-04-02.

    Google Scholar

    [39] Yao H H, Lv K Y, Zhang J R, et al. Effect of elastic modulus on the accuracy of the finite element method in simulating precision glass molding[J]. Materials, 2019, 12(22): 3788. doi: 10.3390/ma12223788

    CrossRef Google Scholar

    [40] Su L J, Yi A Y. Investigation of the effect of coefficient of thermal expansion on prediction of refractive index of thermally formed glass lenses using FEM simulation[J]. J Non-Cryst Solids, 2011, 357(15): 3006−3012. doi: 10.1016/j.jnoncrysol.2011.04.005

    CrossRef Google Scholar

    [41] Luo H, Yu J W, Hu J Z, et al. Effects of uniform/nonuniform interface friction on mold-filling behavior of glass microarray: a numerical-experimental study[J]. Tribol Lett, 2022, 70(1): 20. doi: 10.1007/s11249-022-01563-w

    CrossRef Google Scholar

    [42] Cha D H, Kim H J, Park H S, et al. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications[J]. Appl Opt, 2010, 49(9): 1607−1613. doi: 10.1364/AO.49.001607

    CrossRef Google Scholar

    [43] Jain A, Firestone G C, Yi A Y. Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process[J]. J Am Ceram Soc, 2005, 88(9): 2409−2414. doi: 10.1111/j.1551-2916.2005.00477.x

    CrossRef Google Scholar

    [44] Jain A, Yi A Y. Finite element modeling of structural relaxation during annealing of a precision-molded glass lens[J]. J Manuf Sci Eng, 2006, 128(3): 683−690. doi: 10.1115/1.2163362

    CrossRef Google Scholar

    [45] Jain A, Yi A Y, Xie X P, et al. Finite element modelling of stress relaxation in glass lens moulding using measured, temperature-dependent elastic modulus and viscosity data of glass[J]. Modell Simul Mater Sci Eng, 2006, 14(3): 465−477. doi: 10.1088/0965-0393/14/3/009

    CrossRef Google Scholar

    [46] Li H, He P, Yu J F, et al. Localized rapid heating process for precision chalcogenide glass molding[J]. Opt Lasers Eng, 2015, 73: 62−68. doi: 10.1016/j.optlaseng.2015.04.007

    CrossRef Google Scholar

    [47] Zhou T F, Yan J W, Masuda J, et al. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process[J]. J Mater Process Technol, 2009, 209(9): 4484−4489. doi: 10.1016/j.jmatprotec.2008.10.030

    CrossRef Google Scholar

    [48] Wang T, Zhou T F, Chen J, et al. Study the formation process of cuboid microprotrusion by glass molding process[J]. Micromachines, 2017, 8(3): 66. doi: 10.3390/mi8030066

    CrossRef Google Scholar

    [49] Zhou T F, Zhou Q, Xie J Q, et al. Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process[J]. Appl Opt, 2017, 56(30): 8394−8402. doi: 10.1364/AO.56.008394

    CrossRef Google Scholar

    [50] Cha D H, Kim H J, Hwang Y, et al. Fabrication of molded chalcogenide-glass lens for thermal imaging applications[J]. Appl Opt, 2012, 51(23): 5649−5656. doi: 10.1364/AO.51.005649

    CrossRef Google Scholar

    [51] 付航. AR中的非球面透镜模压成型技术研究[D]. 长春: 长春理工大学, 2022: 30‒50. https://doi.org/10.26977/d.cnki.gccgc.2022.000650.

    Google Scholar

    Fu H. Precision glass molding technology of aspheric lens in AR[D]. Changchun: Changchun University of Science and Technology, 2022: 30‒50. https://doi.org/10.26977/d.cnki.gccgc.2022.000650.

    Google Scholar

    [52] 陈津平, 刘悦, 李闯, 等. 硫系玻璃衍射面模压成型仿真分析与实验研究[J]. 光学学报, 2023, 43(8): 0822024. doi: 10.3788/AOS221885

    CrossRef Google Scholar

    Chen J P, Liu Y, Li C, et al. Simulation analysis and experimental study on compression molding of chalcogenide-glass diffractive surface[J]. Acta Opt Sin, 2023, 43(8): 0822024. doi: 10.3788/AOS221885

    CrossRef Google Scholar

    [53] Novak J, Pini R, Moreshead W V, et al. Investigation of index of refraction changes in chalcogenide glasses during molding processes[J]. Proc SPIE, 2013, 8896: 889602. doi: 10.1117/12.2028902

    CrossRef Google Scholar

    [54] Fotheringham U, Baltes A, Fischer P, et al. Refractive index drop observed after precision molding of optical elements: a quantitative understanding based on the Tool–Narayanaswamy–Moynihan model[J]. J Am Ceram Soc, 2008, 91(3): 780−783. doi: 10.1111/j.1551-2916.2007.02238.x

    CrossRef Google Scholar

    [55] Zhou T F, Yan J W, Yoshihara N, et al. Study on nonisothermal glass molding press for aspherical lens[J]. J Adv Mech Design, Syst, Manuf, 2010, 4(5): 806−815. doi: 10.1299/jamdsm.4.806

    CrossRef Google Scholar

    [56] Zhou T F, Xie J Q, Yan J W, et al. Improvement of glass formability in ultrasonic vibration assisted molding process[J]. Int J Precis Eng Manuf, 2017, 18(1): 57−62. doi: 10.1007/s12541-017-0007-6

    CrossRef Google Scholar

    [57] 李婵. 超声振动辅助微光学玻璃元件模压仿真和实验研究[D]. 长沙: 湖南大学, 2018: 20‒40.

    Google Scholar

    Li C. Experimental research and simulation analysis on ultrasonic vibration-assisted molding press for optical microstructures[D]. Changsha: Hunan University, 2018: 20‒40.

    Google Scholar

    [58] Bobba D, Morgan C. Reduction of cycle time during press molding of glass lenses[J]. Proc SPIE, 2022, 12219: 1221904. doi: 10.1117/12.2633380

    CrossRef Google Scholar

    [59] Doushkina V, Fleming E. Optical and mechanical design advantages using polymer optics[J]. Proc SPIE, 2009, 7424: 74240Q. doi: 10.1117/12.832319

    CrossRef Google Scholar

    [60] Anderson L E, Kleine T S, Zhang Y Y, et al. Chalcogenide hybrid inorganic/organic polymers: ultrahigh refractive index polymers for infrared imaging[J]. ACS Macro Lett, 2017, 6(5): 500−504. doi: 10.1021/acsmacrolett.7b00225

    CrossRef Google Scholar

    [61] Griebel J J, Namnabat S, Kim E T, et al. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers[J]. Adv Mater, 2014, 26(19): 3014−3018. doi: 10.1002/adma.201305607

    CrossRef Google Scholar

    [62] Palmer A L. Practical design considerations for polymer optical systems[J]. Proc SPIE, 1982, 0306: 18−23. doi: 10.1117/12.932712

    CrossRef Google Scholar

    [63] Voznesenskaya A, Ekimenkova A. Modeling of hybrid polymer optical systems[J]. Proc SPIE, 2018, 10690: 1069014. doi: 10.1117/12.2312706

    CrossRef Google Scholar

    [64] Behrmann G P, Bowen J P, Mait J N. Thermal properties of diffractive optical elements and design of hybrid athermalized lenses[J]. Proc SPIE, 1993, 10271: 102710C. doi: 10.1117/12.170185

    CrossRef Google Scholar

    [65] 辛企明. 光学塑料非球面制造技术[M]. 北京: 国防工业出版社, 2005.

    Google Scholar

    Xin Q M. Manufacturing Technology of Plastic Aspheric Lens[M]. Beijing: National Defense Industry Press, 2005.

    Google Scholar

    [66] Chen S M, Li B H, Zhang Y J, et al. Effects of the injection compression process parameters on residual stress of plastic lenses[J]. Appl Opt, 2020, 59(30): 9626−9632. doi: 10.1364/AO.404024

    CrossRef Google Scholar

    [67] Li Z J, Fang F Z, Gong H, et al. Review of diamond-cutting ferrous metals[J]. Int J Adv Manuf Technol, 2013, 68(5): 1717−1731. doi: 10.1007/s00170-013-4970-5

    CrossRef Google Scholar

    [68] Lan X R, Li C, Yang C, et al. Optimization of injection molding process parameters and axial surface compensation for producing an aspheric plastic lens with large diameter and center thickness[J]. Appl Opt, 2019, 58(4): 927−934. doi: 10.1364/AO.58.000927

    CrossRef Google Scholar

    [69] 郑辉. 超声波辅助微注塑方法及工艺研究[D]. 天津: 天津大学, 2012: 5‒20.

    Google Scholar

    Zheng H. Methodology and technology for[D]. Tianjin: Tianjin University, 2012: 5‒20.

    Google Scholar

    [70] 兰喜瑞. 成像光学塑料透镜的精密注塑成型技术研究[D]. 长春: 长春理工大学, 2019: 26‒40.

    Google Scholar

    Lan X R. Studies on precision injection molding technology of imaging optical plastic lens[D]. Changchun: Changchun University of Science and Technology, 2019: 26‒40.

    Google Scholar

    [71] 刘兴国. 衍射光学元件的精密注塑成型工艺研究[D]. 长春: 长春理工大学, 2020: 26‒50. https://doi.org/10.26977/d.cnki.gccgc.2020.000695.

    Google Scholar

    Liu X G. Studies on precision injection molding process of diffractive optical elements[D]. Changchun: Changchun University of Science and Technology, 2020: 26‒50.

    Google Scholar

    [72] Hsu M Y, Cheng Y C, Chang S T, et al. Residue stress analysis of molding aspherical plastic lens[J]. Proc SPIE, 2015, 9573: 95730P. doi: 10.1117/12.2185267

    CrossRef Google Scholar

    [73] 邓嘉乐. 塑胶成形镜片的双折射/内应力分布仿真[D]. 西安: 西安工业大学, 2021: 40‒50. https://doi.org/10.27391/d.cnki.gxagu.2021.000636.

    Google Scholar

    Deng J L. Simulation of briefringence/internal stress distribution of plastic molded lenses[D]. Xi’an: Xi’an Technological University, 2021: 40‒50. https://doi.org/10.27391/d.cnki.gxagu.2021.000636.

    Google Scholar

    [74] Weng C, Lee W B, To S, et al. Numerical simulation of residual stress and birefringence in the precision injection molding of plastic microlens arrays[J]. Int Commun Heat Mass Transfer, 2009, 36(3): 213−219. doi: 10.1016/j.icheatmasstransfer.2008.11.002

    CrossRef Google Scholar

    [75] Lin C M, Chen Y W. Grey optimization of injection molding processing of plastic optical lens based on joint consideration of aberration and birefringence effects[J]. Microsyst Technol, 2019, 25(2): 621−631. doi: 10.1007/s00542-018-4001-4

    CrossRef Google Scholar

    [76] Lin C M, Tan C M, Wang C K. Gate design optimization in the injection molding of the optical lens[J]. Optoelectron Adv Mater-Rapid Commun, 2013, 7(7): 580−584.

    Google Scholar

    [77] Tsai K M. Runner design to improve quality of plastic optical lens[J]. Int J Adv Manuf Technol, 2013, 66(1): 523−536. doi: 10.1007/s00170-012-4346-2

    CrossRef Google Scholar

    [78] Tsai K M, Lin Y W. Quality improvement of optical lenses using innovative runner design[J]. Int J Manuf Res, 2013, 8(4): 337−356. doi: 10.1504/IJMR.2013.057746

    CrossRef Google Scholar

    [79] Dick L, Risse S, Tünnermann A. Injection molded high precision freeform optics for high volume applications[J]. Adv Opt Technol, 2012, 1: 39−50. doi: 10.1515/aot-2011-0009

    CrossRef Google Scholar

    [80] Lu X H, Khim L S. A statistical experimental study of the injection molding of optical lenses[J]. J Mater Process Technol, 2001, 113(1-3): 189−195. doi: 10.1016/S0924-0136(01)00606-9

    CrossRef Google Scholar

    [81] Shieh J Y, Wang L K, Ke S Y. A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses[J]. Opt Rev, 2010, 17(4): 399−403. doi: 10.1007/s10043-010-0074-8

    CrossRef Google Scholar

    [82] Bensingh R J, Boopathy S R, Jebaraj C. Minimization of variation in volumetric shrinkage and deflection on injection molding of Bi-aspheric lens using numerical simulation[J]. J Mech Sci Technol, 2016, 30(11): 5143−5152. doi: 10.1007/s12206-016-1032-6

    CrossRef Google Scholar

    [83] Yin X H, Yang C, Li X P, et al. 3D thickness distributions of plano lenses as a means of cavity pressure characterization in microinjection molding[J]. Opt Express, 2018, 26(9): 11250−11264. doi: 10.1364/OE.26.011250

    CrossRef Google Scholar

    [84] Wen J L, Wen P F. The simulation and optimization of aspheric plastic lens injection molding[J]. J Wuhan Univ Technol-Mater Sci Ed, 2005, 20(2): 86−89. doi: 10.1007/BF02838498

    CrossRef Google Scholar

    [85] Tsai K M, Hsieh C Y, Lo W C. A study of the effects of process parameters for injection molding on surface quality of optical lenses[J]. J Mater Process Technol, 2009, 209(7): 3469−3477. doi: 10.1016/j.jmatprotec.2008.08.006

    CrossRef Google Scholar

    [86] Bensingh R J, Machavaram R, Boopathy S R, et al. Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO)[J]. Measurement, 2019, 134: 359−374. doi: 10.1016/j.measurement.2018.10.066

    CrossRef Google Scholar

    [87] Tsai K M, Luo H J. An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm[J]. J Intell Manuf, 2017, 28(2): 473−487. doi: 10.1007/s10845-014-0999-z

    CrossRef Google Scholar

    [88] Fang F Z, Zhang N, Zhang X D. Precision injection molding of freeform optics[J]. Adv Opt Technol, 2016, 5(4): 303−324. doi: 10.1515/aot-2016-0033

    CrossRef Google Scholar

    [89] Loaldi D, Calaon M, Quagliotti D, et al. Tolerance verification of precision injection moulded Fresnel lenses[J]. Proc CIRP, 2018, 75: 137−142. doi: 10.1016/j.procir.2018.05.004

    CrossRef Google Scholar

    [90] Loaldi D, Quagliotti D, Calaon M, et al. Manufacturing signatures of injection molding and injection compression molding for micro-structured polymer fresnel lens production[J]. Micromachines, 2018, 9(12): 653. doi: 10.3390/mi9120653

    CrossRef Google Scholar

    [91] Wu C H, Chen W S. Injection molding and injection compression molding of three-beam grating of DVD pickup lens[J]. Sens Actuators A Phys, 2006, 125(2): 367−375. doi: 10.1016/j.sna.2005.07.025

    CrossRef Google Scholar

    [92] Chen Y C, Nian S C, Huang M S. Optical design of the Fresnel lens for LED-driven flashlight[J]. Appl Opt, 2016, 55(4): 712−721. doi: 10.1364/AO.55.000712

    CrossRef Google Scholar

    [93] Michaeli W, Wielpuetz M. Optimisation of the optical part quality of polymer glasses in the injection compression moulding process[J]. Macromol Mater Eng, 2000, 284–285(1): 8−13. doi: 10.1002/1439-2054(20001201)284:1<8::AID-MAME8>3.0.CO;2-1

    CrossRef Google Scholar

    [94] Michaeli W, Heßner S, Klaiber F, et al. Geometrical accuracy and optical performance of injection moulded and injection-compression moulded plastic parts[J]. CIRP Anna, 2007, 56(1): 545−548. doi: 10.1016/j.cirp.2007.05.130

    CrossRef Google Scholar

    [95] Sortino M, Totis G, Kuljanic E. Comparison of injection molding technologies for the production of micro-optical devices[J]. Proc Eng, 2014, 69: 1296−1305. doi: 10.1016/j.proeng.2014.03.122

    CrossRef Google Scholar

    [96] Roeder M, Drexler M, Rothermel T, et al. Injection compression molded microlens arrays for hyperspectral imaging[J]. Micromachines, 2018, 9(7): 355. doi: 10.3390/mi9070355

    CrossRef Google Scholar

    [97] Chen S C, Chen Y C, Peng H S. Simulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage[J]. J Appl Polym Sci, 2000, 75(13): 1640−1654. doi: 10.1002/(SICI)1097-4628(20000328)75:13<1640::AID-APP10>3.0.CO;2-L

    CrossRef Google Scholar

    [98] Young W B. Effect of process parameters on injection compression molding of pickup lens[J]. Appl Math Modell, 2005, 29(10): 955−971. doi: 10.1016/j.apm.2005.02.004

    CrossRef Google Scholar

    [99] Weng C, Lee W B, To S. Birefringence techniques for the characterization of residual stresses in injection-moulded micro-lens arrays[J]. Polym Test, 2009, 28(7): 709−714. doi: 10.1016/j.polymertesting.2009.06.007

    CrossRef Google Scholar

    [100] Su L J, Chen Y, Yi A Y, et al. Refractive index variation in compression molding of precision glass optical components[J]. Appl Opt, 2008, 47(10): 1662−1667. doi: 10.1364/AO.47.001662

    CrossRef Google Scholar

    [101] Zhang L, Zhou W C, Yi A Y. Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding[J]. Appl Opt, 2018, 57(22): 6358−6368. doi: 10.1364/AO.57.006358

    CrossRef Google Scholar

  • Aspheric optical elements are widely used in various optical systems because they can eliminate spherical aberration, coma, astigmatism, field distortion, and other unfavorable factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical properties. With the rapid development of the optical industry, the demand for aspheric optical elements is also increasing. At the same time, the optical components in the system need to ensure high surface accuracy and low optical birefringence to improve the user experience, which puts forward higher requirements and challenges for the manufacturing method of optical components. The traditional manufacturing methods of aspheric optical elements often have problems such as high manufacturing costs, long processing cycles, and difficulty in ensuring manufacturing accuracy, which limits the wide application of aspheric optical elements. In order to overcome these constraints, researchers have conducted in-depth research on the manufacturing technology of aspheric optical components, aiming to achieve efficient, economical, and accurate manufacturing methods. With the development and popularization of computers in recent years, advanced optical manufacturing technology has gradually begun to be applied to the processing of optical components, and is gradually replacing traditional processing techniques such as classical polishing that have been used for decades. It includes ultra-precision cutting technology, ultra-precision grinding technology, ultra-precision polishing technology, precision glass molding technology, and precision injection molding technology. This paper first introduces the advanced optical manufacturing technology of various aspheric optical components and compares them horizontally. Among them, ultra-precision cutting technology, ultra-precision grinding technology, and ultra-precision polishing technology have high precision of machining components. However, due to the high precision of machining components, ultra-precision machining technology usually requires a slower feed rate, so the machining speed is relatively slow, which leads to the increased manufacturing cost of components. In order to meet the market demand, the rapid manufacturing technology of aspheric optical components is one of the best solutions to achieve low-cost, high-volume, and high-precision production. Then we introduce the precision glass molding technology and precision injection molding technology in detail. The two technologies are compared with the manufacturing technology of other aspheric optical components, and the types of mold materials, mold processing methods, molding materials, molding process and so on are described. Finally, the development status of rapid manufacturing technology of aspheric optical elements in recent years is summarized, and the future development is prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(38)

Tables(3)

Article Metrics

Article views(3616) PDF downloads(1132) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint