Hua Z Y, Xu Z R, Peng S J, et al. Research progress on numerical simulations of long space laser propagation[J]. Opto-Electron Eng, 2024, 51(2): 230185. doi: 10.12086/oee.2024.230185
Citation: Hua Z Y, Xu Z R, Peng S J, et al. Research progress on numerical simulations of long space laser propagation[J]. Opto-Electron Eng, 2024, 51(2): 230185. doi: 10.12086/oee.2024.230185

Research progress on numerical simulations of long space laser propagation

    Fund Project: Project supported by National Key Research and Development Program of China (2021YFC2202001)
More Information
  • This paper mainly introduces the development of space gravitational wave transmission and laser propagation in space gravitational wave detection. We profile the calculation methods used in the simulation of laser propagation and jitter noise in space-based laser interferometry. Compared with ground detection, space gravitational wave detection can effectively reduce noise and increase the length of the interference arm to realize high-precision gravitational wave detection. Under the distance of millions of kilometers and the precision requirements of the picometer level, it is necessary to consider the phase noise caused by pointing jitter with the telescope. Research has shown that defocus and astigmatism are the main aberrations affecting jitter noise at a distance of 2.5×109 m. There is a deviation between the phase stationary point and the origin position. To minimize the phase noise, the telescope angle needs to be adjusted. The gravitational wave detection at the phase stationary point can effectively reduce the phase noise and the requirements of the telescope exit pupil wavefront RMS. The large defocus and small coma can make the phase stationary point close to the optical axis and increase the received laser power.
  • 加载中
  • [1] Einstein A. Approximative integration of the field equations of gravitation[J]. Sitzungsber Preuss Akad Wiss, 1916, 1916: 688−696.

    Google Scholar

    [2] Taylor J H, Weisberg J M. A new test of general relativity - gravitational radiation and the binary pulsar PSR 1913+16[J]. Astrophys J, 1982, 253: 908−920. doi: 10.1086/159690

    CrossRef Google Scholar

    [3] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102

    CrossRef Google Scholar

    [4] 黄玉梅, 王运永, 汤克云, 等. 引力波理论和实验的新进展[J]. 天文学进展, 2007, 25(1): 58−73. doi: 10.3969/j.issn.1000-8349.2007.01.006

    CrossRef Google Scholar

    Huang Y M, Wang Y Y, Tang K Y, et al. The new development of gravitational waves theory and detection[J]. Prog Astron, 2007, 25(1): 58−73. doi: 10.3969/j.issn.1000-8349.2007.01.006

    CrossRef Google Scholar

    [5] 李建聪, 林宏安, 罗佳雄, 等. 空间引力波探测望远镜光学系统设计[J]. 中国光学(中英文), 2022, 15(4): 761−769. doi: 10.37188/CO.2022-0018

    CrossRef Google Scholar

    Li J C, Lin H A, Luo J X, et al. Optical design of space gravitational wave detection telescope[J]. Chin Opt, 2022, 15(4): 761−769. doi: 10.37188/CO.2022-0018

    CrossRef Google Scholar

    [6] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415−447. doi: 10.6052/1000-0992-13-044

    CrossRef Google Scholar

    Luo Z R, Bai S, Bian X, et al. Gravitational wave detection by space laser interferometry[J]. Adv Mech, 2013, 43(4): 415−447. doi: 10.6052/1000-0992-13-044

    CrossRef Google Scholar

    [7] 位希雅,宋奇林,杨金生,等. 基于夏克-哈特曼传感器的星载望远镜波前测量技术研究[J]. 光电工程, 2023, 50(11): 230215. doi: 10.12086/oee.2023.230215

    CrossRef Google Scholar

    Wei X Y, Song Q L, Yang J S, et al. Research on wavefront measurement technology of space-based telescope using Shack-Hartmann wavefront sensor[J]. Opto-Electron Eng, 2023, 50(11): 230215. doi: 10.12086/oee.2023.230215

    CrossRef Google Scholar

    [8] Danzmann K, The LISA Study Team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Class Quantum Grav, 1996, 13(11A): A247. doi: 10.1088/0264-9381/13/11A/033

    CrossRef Google Scholar

    [9] Danzmann K, The LISA Study Team. LISA - An ESA cornerstone mission for a gravitational wave observatory[J]. Class Quantum Grav, 1997, 14(6): 1399. doi: 10.1088/0264-9381/14/6/002

    CrossRef Google Scholar

    [10] 王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 131−151. doi: 10.3788/co.20181101.0131

    CrossRef Google Scholar

    Wang Z, Sha W, Chen Z, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chin Opt, 2018, 11(1): 131−151. doi: 10.3788/co.20181101.0131

    CrossRef Google Scholar

    [11] 倪维斗, 门金瑞, 梅晓红, 等. ASTROD空间引力波探测优化方案: ASTROD-GW[C]//中国宇航学会深空探测技术专业委员会第六届学术年会暨863计划“深空探测与空间实验技术”重大项目学术研讨会, 三亚, 2009.

    Google Scholar

    [12] Bender P L. Additional astrophysical objectives for LISA follow-on missions[J]. Class Quantum Grav, 2004, 21(5): S1203. doi: 10.1088/0264-9381/21/5/120

    CrossRef Google Scholar

    [13] Corbin V, Cornish N J. Detecting the cosmic gravitational wave background with the Big Bang Observer[J]. Class Quantum Grav, 2006, 23(7): 2435. doi: 10.1088/0264-9381/23/7/014

    CrossRef Google Scholar

    [14] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    CrossRef Google Scholar

    [15] Hu W R, Wu Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. Natl Sci Rev, 2017, 4(5): 685−686. doi: 10.1093/nsr/nwx116

    CrossRef Google Scholar

    [16] 王芸, 林栩凌, 郭忠凯, 等. 空间应用激光干涉测距技术发展综述[J]. 航天返回与遥感, 2021, 42(2): 68−78. doi: 10.3969/j.issn.1009-8518.2021.02.008

    CrossRef Google Scholar

    Wang Y, Lin X L, Guo Z K, et al. Review of high precision distance metrology in space applications[J]. Spacecr Recovery Remote Sens, 2021, 42(2): 68−78. doi: 10.3969/j.issn.1009-8518.2021.02.008

    CrossRef Google Scholar

    [17] 胡新春. 基于天琴的大质量双黑洞引力波数据处理研究[D]. 武汉: 华中科技大学, 2021.

    Google Scholar

    Hu X C. Gravitational wave data analysis of massive black hole binaries for TianQin[D]. Wuhan: Huazhong University of Science and Technology, 2021.

    Google Scholar

    [18] 罗俊, 艾凌皓, 艾艳丽. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 1−19. doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154

    CrossRef Google Scholar

    Luo J, Ai L H, Ai Y L. A brief introduction to the TianQin project[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1-2): 1−19. doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154

    CrossRef Google Scholar

    [19] 高瑞弘, 刘河山, 罗子人, 等. 太极计划激光指向调控方案介绍[J]. 中国光学, 2019, 12(3): 425−431. doi: 10.3788/CO.20191203.0425

    CrossRef Google Scholar

    Gao R H, Liu H S, Luo Z R, et al. Introduction of laser pointing scheme in the Taiji program[J]. Chin Opt, 2019, 12(3): 425−431. doi: 10.3788/CO.20191203.0425

    CrossRef Google Scholar

    [20] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报, 2020, 7(1): 3−10. doi: 10.15982/j.issn.2095-7777.2020.20191230001

    CrossRef Google Scholar

    Luo Z R, Zhang M, Jin G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. J Deep Space Explor, 2020, 7(1): 3−10. doi: 10.15982/j.issn.2095-7777.2020.20191230001

    CrossRef Google Scholar

    [21] 赵梦阳, 高瑞弘, 张强涛, 等. 太极计划激光链路构建地面模拟控制系统研究[J]. 中国激光, 2023, 50(19): 1906003.

    Google Scholar

    Zhao M Y, Gao R H, Zhang Q T, et al. Research on simulated laser link construction control system of Taiji program[J]. Chin J Lasers, 2023, 50(19): 1906003.

    Google Scholar

    [22] Kenny F, Devaney N. Beam propagation simulations for LISA in the presence of telescope aberrations[J]. Class Quantum Grav, 2021, 38(3): 035010. doi: 10.1088/1361-6382/abccdd

    CrossRef Google Scholar

    [23] Weaver A, Fulda P, Mueller G. Analytic HG-mode propagation through circular apertures with Zernike phase offset[J]. OSA Continuum, 2020, 3(7): 1891−1916. doi: 10.1364/OSAC.394476

    CrossRef Google Scholar

    [24] Lu L F, Liu Y, Duan H Z, et al. Numerical simulations of the wavefront distortion of inter-spacecraft laser beams caused by solar wind and magnetospheric plasmas[J]. Plasma Sci Technol, 2020, 22(11): 115301. doi: 10.1088/2058-6272/abab69

    CrossRef Google Scholar

    [25] Noll R J. Zernike polynomials and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207−211. doi: 10.1364/JOSA.66.000207

    CrossRef Google Scholar

    [26] Bender P L. Wavefront distortion and beam pointing for LISA[J]. Class Quantum Grav, 2005, 22(10): S339−S346. doi: 10.1088/0264-9381/22/10/027

    CrossRef Google Scholar

    [27] Sasso C P, Mana G, Mottini S. Coupling of wavefront errors and jitter in the LISA interferometer: far-field propagation[J]. Class Quantum Grav, 2018, 35(18): 185013. doi: 10.1088/1361-6382/aad7f5

    CrossRef Google Scholar

    [28] Sasso C P, Mana G, Mottini S. Telescope jitters and phase noise in the LISA interferometer[J]. Opt Express, 2019, 27(12): 16855−16870. doi: 10.1364/OE.27.016855

    CrossRef Google Scholar

    [29] Vinet J Y, Christensen N, Dinu-Jaeger N, et al. Numerical solutions for phase noise due to pointing jitter with the LISA telescope[J]. J Phys Commun, 2020, 4(4): 045005. doi: 10.1088/2399-6528/ab852e

    CrossRef Google Scholar

    [30] Ming M, Jiang Y Z, Zhang J Y, et al. Analysis on the coupling effect of wavefront distortion and pointing misalignment in space laser interferometry[J]. Class Quantum Grav, 2021, 38(19): 195010. doi: 10.1088/1361-6382/ac1be2

    CrossRef Google Scholar

    [31] 赵亚. 面向空间激光干涉引力波探测的星间干涉链路中抖动光程耦合噪声研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    Google Scholar

    Zhao Y. The research on the tilt to length coupling noise in inter-satellite interference link for the space-based gravitational wave detection[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021.

    Google Scholar

    [32] Weaver A J, Mueller G, Fulda P J. Wavefront error based tilt-to-length noise analysis for the LISA transmitted beam[J]. Class Quantum Grav, 2022, 39(19): 195016. doi: 10.1088/1361-6382/ac8a88

    CrossRef Google Scholar

    [33] Tao Y Z, Jin H B, Wu Y L. Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection[J]. Chin Phys B, 2023, 32(2): 024212. doi: 10.1088/1674-1056/aca9c5

    CrossRef Google Scholar

    [34] Xiao Q, Duan H Z, Ming M, et al. The analysis of the far-field phase and the tilt-to-length error contribution in space-based laser interferometry[J]. Class Quantum Grav, 2023, 40(6): 065009. doi: 10.1088/1361-6382/acbadc

    CrossRef Google Scholar

  • Compared with ground gravitational wave detection, space gravitational wave detection can avoid the low-frequency noise caused by ground vibration and the interference of climate change on the transmission. The space environment can also greatly increase the arm length of laser interference to achieve high-precision gravitational wave detection. However, the ultra-long inter-satellite link transmission distance also puts forward extremely high requirements for pointing accuracy and dynamic measurement capabilities. At a transmission distance of millions of kilometers, the detection accuracy needs to reach the picometer level.

    To minimize the influence of noises on the detection, we must simulate the system with high precision. The simulation of inter-satellite transmission can be realized by Hermite Gaussian beam fitting, Fourier transform or numerical integration. The plasma has little effect on inter-satellite transmission under most circumstances. It will thus not affect the detection. Pointing jitter noise is the focus of research in inter-satellite transmission. In the actual system, there are aberrations in the exit pupil wavefront of the telescope, so the far-field wavefront is no longer close to the ideal spherical wave. An angle offset of 10 nrad will cause a position offset of tens of meters in the far field. In the analysis, the far-field origin is usually taken as the object, and the phase part of the telescope exit pupil complex amplitude is expanded to simplify the model in a Taylor series. The coupling coefficients between the far field and the exit pupil Zernike aberration of the telescope can be calculated by the integral calculation or the least square fitting. To satisfy the simulation accuracy of the picometer level, the Taylor expansion and the coupling coefficients should retain at least the second-order term.

    Taking the LISA system as a reference, the phase noise of the inter-satellite transmission needs to be less than 1 pm. Research has shown that the defocus and the astigmatism are the main aberrations affecting jitter noise at a distance of 2.5×109 m. There is a deviation between the phase stationary point and the origin position. To minimize the phase noise, the telescope angle needs to be adjusted. The gravitational wave detection at the phase stationary point can effectively reduce the phase noise and the requirements of the telescope exit pupil wavefront RMS. The large defocus and small coma can make the phase stationary point close to the optical axis and increase the received laser power.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(948) PDF downloads(344) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint