Qi H Y, Zhang W H, Zhai D D, et al. High-resolution Bessel beam laser imaging[J]. Opto-Electron Eng, 2024, 51(3): 230243. doi: 10.12086/oee.2024.230243
Citation: Qi H Y, Zhang W H, Zhai D D, et al. High-resolution Bessel beam laser imaging[J]. Opto-Electron Eng, 2024, 51(3): 230243. doi: 10.12086/oee.2024.230243

High-resolution Bessel beam laser imaging

    Fund Project: Project supported by “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (21CGA31), National Natural Science Foundation of China (11804099, 62175067, 62075062) and Research Funds of Happiness Flower ECNU (2021ST2110)
More Information
  • We demonstrate a new laser detection and ranging (LiDAR) system for reconstructing remote targets in three dimensions (3D). In this system, a probe beam, of which wavelength is 532 nm, working at Bessel mode rather than Gaussian mode, exhibits a typical intensity distribution of a bright central spot and some surrounding rings, and takes advantage of non-diffraction character in long-distance ranging. It is an attractive way to improve the imaging resolution of the LiDAR system. Combined with the Si-APD, we built a long-distance LiDAR system and completed the verification experiment. The results indicate that we can achieve an 18.1-µrad angle resolution in long-range target imaging, which provides an effective solution for high-resolution remote imaging.
  • 加载中
  • [1] Li Y, Ibanez-Guzman J. Lidar for autonomous driving: the principles, challenges, and trends for automotive Lidar and perception systems[J]. IEEE Signal Process Mag, 2020, 37(4): 50−61. doi: 10.1109/MSP.2020.2973615

    CrossRef Google Scholar

    [2] Li Y, Ma L F, Zhong Z L, et al. Deep learning for LiDAR point clouds in autonomous driving: a review[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32(8): 3412−3432. doi: 10.1109/TNNLS.2020.3015992

    CrossRef Google Scholar

    [3] 蔡怀宇, 陈延真, 卓励然, 等. 基于优化DBSCAN算法的激光雷达障碍物检测[J]. 光电工程, 2019, 46(7): 180514. doi: 10.12086/oee.2019.180514

    CrossRef Google Scholar

    Cai H Y, Chen Y Z, Zhuo L R, et al. LiDAR object detection based on optimized DBSCAN algorithm[J]. Opto-Electron Eng, 2019, 46(7): 180514. doi: 10.12086/oee.2019.180514

    CrossRef Google Scholar

    [4] Li G, Huang Y, Zhang X L, et al. Hybrid maps enhanced localization system for mobile manipulator in harsh manufacturing workshop[J]. IEEE Access, 2020, 8: 10782−10795. doi: 10.1109/ACCESS.2020.2965300

    CrossRef Google Scholar

    [5] Meng J, Wang S T, Xie Y L, et al. A safe and efficient LIDAR-based navigation system for 4WS4WD mobile manipulators in manufacturing plants[J]. Meas Sci Technol, 2021, 32(4): 045203. doi: 10.1088/1361-6501/abce71

    CrossRef Google Scholar

    [6] Rollenbeck R, Bendix J. Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations[J]. Atmos Res, 2011, 99(2): 277−289. doi: 10.1016/j.atmosres.2010.10.018

    CrossRef Google Scholar

    [7] Bates J S, Montzka C, Schmidt M, et al. Estimating canopy density parameters time-series for winter wheat using UAS mounted LiDAR[J]. Remote Sens, 2021, 13(4): 710. doi: 10.3390/rs13040710

    CrossRef Google Scholar

    [8] Miltiadou M, Campbell N D F, Cosker D, et al. A comparative study about data structures used for efficient management of voxelised full-waveform airborne LiDAR data during 3D polygonal model creation[J]. Remote Sens, 2021, 13(4): 559. doi: 10.3390/rs13040559

    CrossRef Google Scholar

    [9] 闫德立, 高尚, 李韶华, 等. 基于激光雷达的道路不平度及可行驶区域检测[J]. 激光技术, 2022, 46(5): 624−629. doi: 10.7510/jgjs.issn.1001-3806.2022.05.007

    CrossRef Google Scholar

    Yan D L, Gao S, Li S H, et al. Detection of road roughness and drivable area based on LiDAR[J]. Laser Technol, 2022, 46(5): 624−629. doi: 10.7510/jgjs.issn.1001-3806.2022.05.007

    CrossRef Google Scholar

    [10] 刘国栋, 刘佳, 刘浪. 一种基于机载LiDAR数据的山区道路提取方法[J]. 激光技术, 2022, 46(4): 466−473. doi: 10.7510/jgjs.issn.1001-3806.2022.04.005

    CrossRef Google Scholar

    Liu G D, Liu J, Liu L. A mountain road extraction method based on airborne LiDAR data[J]. Laser Technol, 2022, 46(4): 466−473. doi: 10.7510/jgjs.issn.1001-3806.2022.04.005

    CrossRef Google Scholar

    [11] 陈海平, 李萌阳, 曹庭分, 等. 基于激光雷达数据的火星表面障碍物识别[J]. 光电工程, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

    CrossRef Google Scholar

    Chen H P, Li M Y, Cao T F, et al. Obstacle recognition on Mars surface based on LiDAR data[J]. Opto-Electron Eng, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

    CrossRef Google Scholar

    [12] Jaboyedoff M, Oppikofer T, Abellán A, et al. Use of LIDAR in landslide investigations: a review[J]. Nat Hazards, 2012, 61(1): 5−28. doi: 10.1007/s11069-010-9634-2

    CrossRef Google Scholar

    [13] Amzajerdian F, Vanek M, Petway L, et al. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies[J]. Proc SPIE, 2010, 7608: 760828. doi: 10.1117/12.843324

    CrossRef Google Scholar

    [14] Stettner R. Compact 3D flash lidar video cameras and applications[J]. Proc SPIE, 2010, 7684: 768405. doi: 10.1117/12.851831

    CrossRef Google Scholar

    [15] Patanwala S M, Gyongy I, Mai H N, et al. A high-throughput photon processing technique for range extension of SPAD-based LiDAR receivers[J]. IEEE Open J Solid-State Circuits Soc, 2022, 2: 12−25. doi: 10.1109/OJSSCS.2021.3118987

    CrossRef Google Scholar

    [16] David R, Allard B, Branca X, et al. Study and design of an integrated CMOS laser diode driver for an iToF-based 3D image sensor[C]//CIPS 2020; 11th International Conference on Integrated Power Electronics Systems, 2020: 1–6.

    Google Scholar

    [17] Padmanabhan P, Zhang C, Cazzaniga M, et al. 7.4 A 256×128 3D-stacked (45 nm) SPAD FLASH LiDAR with 7-level coincidence detection and progressive gating for 100 m range and 10 klux background light[C]//2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021: 111–113. https://doi.org/10.1109/ISSCC42613.2021.9366010.

    Google Scholar

    [18] McCarthy A, Ren X M, Della Frera A, et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector[J]. Opt Express, 2013, 21(19): 22098−22113. doi: 10.1364/OE.21.022098

    CrossRef Google Scholar

    [19] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Opt Express, 2017, 25(10): 11919−11931. doi: 10.1364/OE.25.011919

    CrossRef Google Scholar

    [20] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Res, 2020, 8(9): 1532−1540. doi: 10.1364/PRJ.390091

    CrossRef Google Scholar

    [21] Halimi A, Maccarone A, Lamb R A, et al. Robust and guided Bayesian reconstruction of single-photon 3D Lidar data: application to multispectral and underwater imaging[J]. IEEE Trans Comput Imaging, 2021, 7: 961−974. doi: 10.1109/TCI.2021.3111572

    CrossRef Google Scholar

    [22] Henderson R K, Johnston N, Hutchings S W, et al. 5.7 A 256×256 40 nm/90 nm CMOS 3D-stacked 120dB dynamic-range reconfigurable time-resolved SPAD imager[C]//IEEE International Solid-State Circuits Conference - (ISSCC), 2019: 106–108. https://doi.org/10.1109/ISSCC.2019.8662355.

    Google Scholar

    [23] Stettner R, Bailey H, Richmond R D. Eye-safe laser radar 3D imaging[J]. Proc SPIE, 2004, 5412: 111−116. doi: 10.1117/12.553992

    CrossRef Google Scholar

    [24] Marino R M, Davis W R, Jr. Jigsaw: a foliage-penetrating 3D imaging laser radar system[J]. Lincoln Lab J, 2005, 15(1): 23−36.

    Google Scholar

    [25] Hutchings S W, Johnston N, Gyongy I, et al. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging[J]. IEEE J Solid-State Circuits, 2019, 54(11): 2947−2956. doi: 10.1109/JSSC.2019.2939083

    CrossRef Google Scholar

    [26] Gyongy I, Erdogan A T, Dutton N A W, et al. A direct time-of-flight image sensor with in-pixel surface detection and dynamic vision[J]. IEEE J Sel Top Quantum Electron, 2023. https://doi.org/10.1109/JSTQE.2023.3238520.

    Google Scholar

    [27] DeBeer D, Hartmann S R, Friedberg R. Comment on "Diffraction-free beams"[J]. Phys Rev Lett, 1987, 59(22): 2611. doi: 10.1103/PhysRevLett.59.2611

    CrossRef Google Scholar

    [28] 周莉萍, 赵斌, 李柱. 无衍射光束在激光三角测量系统中的应用研究[J]. 激光技术, 1998, 22(1): 22−25.

    Google Scholar

    Zhou L P, Zhao B, Li Z. Research on laser triangulation measurement system with non-diffraction beam[J]. Laser Technol, 1998, 22(1): 22−25.

    Google Scholar

    [29] Meng H F, Xiang B, Zhang J L, et al. The generation of Bessel beam and its application in millimeter wave imaging[J]. J Infrared Milli Terahz Waves, 2014, 35(2): 208−217. doi: 10.1007/s10762-013-0037-9

    CrossRef Google Scholar

    [30] Scott G, McArdle N. Efficient generation of nearly diffraction-free beams using an axicon[J]. Opt Eng, 1992, 31(12): 2640−2643. doi: 10.1117/12.60017

    CrossRef Google Scholar

  • Laser detection and ranging (LiDAR) technique has very important applications in many fields, including 3D terrain analysis, medical applications, object shape measurement, and surface defect detection. As one of the widely used LiDAR schemes, the time of flight (TOF) measurement technique can accurately measure the time interval between the target and the system, with the advantages of fast measurement and long working distance. With the help of highly sensitive photon detection techniques and high-precision time interval measurement methods, single-photon LiDAR can greatly expand its working range and distance accuracy. Angular resolution, as an important evaluation indicator for the LiDAR system, indicates its target recognition ability. The traditional LiDAR system usually contains a laser source that emits intense beams in Gaussian spatial mode to illuminate the target. The inherent diffraction property of the casting beam, however, sometimes hinders the performance improvement of the LiDAR, especially in angular resolution.

    Based on the Si-APD single-photon detector, we demonstrate a new single-photon LiDAR at 532 nm for reconstructing remote targets. In this system, a probe beam, working at Bessel mode rather than Gaussian mode, exhibits a typical intensity distribution of a bright central spot and some surrounding rings. Taking advantage of the non-diffraction character in long-distance ranging, the employment of a Bessel beam could improve the imaging resolution of the LiDAR. To validate the angular resolution of the LiDAR system, we selected a billboard metal scaffold located 2.7 km away as the target. The billboard is supported by a scaffold at its base, with each scaffold beam approximately 5~6 cm wide. The system imaging result consists of 420×29 pixels. The distance point cloud is concentrated at a distance of 2755 m. Through the grayscale image, we can clearly observe the structure of the billboard message and supporting scaffold. The results indicate that the LiDAR system could achieve an 18.1-µrad angle resolution in long-range target imaging, which provides an effective solution for high-resolution remote imaging.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(489) PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint