Zhang T W, Hu K, Li G B, et al. Research progress in the quantum dots of nonmetals and their compounds prepared by ultrasonic method[J]. Opto-Electron Eng, 2024, 51(4): 230319. doi: 10.12086/oee.2024.230319
Citation: Zhang T W, Hu K, Li G B, et al. Research progress in the quantum dots of nonmetals and their compounds prepared by ultrasonic method[J]. Opto-Electron Eng, 2024, 51(4): 230319. doi: 10.12086/oee.2024.230319

Research progress in the quantum dots of nonmetals and their compounds prepared by ultrasonic method

    Fund Project: Project supported by the Science and Technology Talents and Platform Project of Science and Technology Department of Yunnan Province (202205AC160026), and Spring City Plan: The High-level Talent Promotion and Training Project of Kunming (2022SCP005)
More Information
  • Quantum dots (QDs), with diameters ranging from 1 to 20 nm, are zero-dimensional nanomaterials. They possess excellent optical properties, including size tunability, broad excitation spectra, high quantum efficiency, wide wavelength range, high photostability, and low photolysis. When the size of QDs approaches or becomes smaller than the exciton Bohr radius, the original material's continuous band structure undergoes quantization, leading to significant changes in properties and exhibiting outstanding optoelectronics performance. This review introduces the preparation methods of QDs, among which the ultrasonic method, as a common "top-down" method, is widely used because of its advantages of simple operation and environmental friendliness. Firstly, the mechanism and characterization techniques of non-metal and non-metallic compound QDs prepared by the ultrasonic method were prepared, and the effects of dispersants agent, ultrasonic power, and time on their size and morphology were analyzed. Subsequently, the application of non-metal and non-metallic compounds QDs prepared by the ultrasonic method in laser, solar cell, and other fields is discussed. The challenges and issues in current research are addressed, and personal perspectives and insights are provided. Finally, the prospect is given.
  • 加载中
  • [1] Chung S, Revia R A, Zhang M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Adv Mater, 2021, 33(22): 1904362. doi: 10.1002/adma.201904362

    CrossRef Google Scholar

    [2] Coles R J, Price D M, Dixon J E, et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer[J]. Nat Commun, 2016, 7: 11183. doi: 10.1038/ncomms11183

    CrossRef Google Scholar

    [3] 叶泰康, 李德鹏, 孙小卫, 等. 量子点微显示技术研究进展[J]. 光电工程, 2022, 49(12): 220008. doi: 10.12086/oee.2022.220008

    CrossRef Google Scholar

    Ye T K, Li D P, Sun X W, et al. Research progress of quantum dot micro display technology[J]. Opto-Electron Eng, 2022, 49(12): 220008. doi: 10.12086/oee.2022.220008

    CrossRef Google Scholar

    [4] Lan X Z, Voznyy O, de Arquer F P G, et al. 10.6% Certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation[J]. Nano Lett, 2016, 16(7): 4630−4634. doi: 10.1021/acs.nanolett.6b01957

    CrossRef Google Scholar

    [5] Chen K Q, Jin W, Zhang Y P, et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering[J]. J Am Chem Soc, 2020, 142(8): 3775−3783. doi: 10.1021/jacs.9b10700

    CrossRef Google Scholar

    [6] Wei M Y, de Arquer F P G, Walters G, et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators[J]. Nat Energy, 2019, 4(3): 197−205. doi: 10.1038/s41560-018-0313-y

    CrossRef Google Scholar

    [7] Heck M J R, Bente E A J M, Smalbrugge B, et al. Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm[J]. Opt Express, 2007, 15(25): 16292−16301. doi: 10.1364/OE.15.016292

    CrossRef Google Scholar

    [8] Xu L M, Li J H, Cai B, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes[J]. Nat Commun, 2020, 11(1): 3902. doi: 10.1038/s41467-020-17633-3

    CrossRef Google Scholar

    [9] Wang Y K, Yuan F L, Dong Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite[J]. Angew Chem Int Ed, 2021, 60(29): 16164−16170. doi: 10.1002/anie.202104812

    CrossRef Google Scholar

    [10] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736−12737. doi: 10.1021/ja040082h

    CrossRef Google Scholar

    [11] Yang S T, Wang X, Wang H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113(42): 18110−18114. doi: 10.1021/jp9085969

    CrossRef Google Scholar

    [12] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem, 2009, 19(4): 484−488. doi: 10.1039/B812943F

    CrossRef Google Scholar

    [13] Li X Y, Wang H Q, Shimizu Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chem Commun, 2011, 47(3): 932−934. doi: 10.1039/C0CC03552A

    CrossRef Google Scholar

    [14] Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Trans, 2012, 41(31): 9526−9531. doi: 10.1039/c2dt30985h

    CrossRef Google Scholar

    [15] Tan X Y, Li Y C, Li X H, et al. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform[J]. Chem Commun, 2015, 51(13): 2544−2546. doi: 10.1039/C4CC09332A

    CrossRef Google Scholar

    [16] Dong Y Q, Chen C Q, Zheng X T, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. J Mater Chem, 2012, 22(18): 8764−8766. doi: 10.1039/c2jm30658a

    CrossRef Google Scholar

    [17] Xu S J, Li D, Wu P Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Adv Funct Mater, 2015, 25(7): 1127−1136. doi: 10.1002/adfm.201403863

    CrossRef Google Scholar

    [18] Liu J C, Wang N, Yu Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes[J]. Sci Adv, 2017, 3(5): e1603171. doi: 10.1126/sciadv.1603171

    CrossRef Google Scholar

    [19] Jiang K, Wang Y H, Gao X L, et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angew Chem Int Ed, 2018, 57(21): 6216−6220. doi: 10.1002/anie.201802441

    CrossRef Google Scholar

    [20] Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Adv Funct Mater, 2012, 22(14): 2971−2979. doi: 10.1002/adfm.201200166

    CrossRef Google Scholar

    [21] Lv W Z, Li L, Xu M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation[J]. Adv Mater, 2019, 31(28): 1900682. doi: 10.1002/adma.201900682

    CrossRef Google Scholar

    [22] Lin L P, Rong M C, Lu S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872−1878. doi: 10.1039/C4NR06365A

    CrossRef Google Scholar

    [23] Wang J, Fan S Y, Xia Y, et al. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3[J]. J Hazard Mater, 2020, 381: 120919. doi: 10.1016/j.jhazmat.2019.120919

    CrossRef Google Scholar

    [24] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): e1226419. doi: 10.1126/science.1226419

    CrossRef Google Scholar

    [25] Chang K, Chen W X. l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720−4728. doi: 10.1021/nn200659w

    CrossRef Google Scholar

    [26] Mohiuddin M, Wang Y C, Zavabeti A, et al. Liquid phase acoustic wave exfoliation of layered MoS2: critical impact of electric field in efficiency[J]. Chem Mater, 2018, 30(16): 5593−5601. doi: 10.1021/acs.chemmater.8b01506

    CrossRef Google Scholar

    [27] Dong L, Lin S, Yang L, et al. Spontaneous exfoliation and tailoring of MoS2 in mixed solvents[J]. Chem Commun, 2014, 50(100): 15936−15939. doi: 10.1039/C4CC07238C

    CrossRef Google Scholar

    [28] Guan G J, Wu M D, Cai Y Q, et al. Surface-mediated chemical dissolution of two-dimensional nanomaterials toward hole creation[J]. Chem Mater, 2018, 30(15): 5108−5115. doi: 10.1021/acs.chemmater.8b01540

    CrossRef Google Scholar

    [29] Backes C, Berner N C, Chen X, et al. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2[J]. Angew Chem Int Ed, 2015, 54(9): 2638−2642. doi: 10.1002/anie.201409412

    CrossRef Google Scholar

    [30] Zhao W Y, Jiang T, Shan Y J, et al. Direct exfoliation of natural SiO2-containing molybdenite in isopropanol: a cost efficient solution for large-scale production of MoS2 nanosheetes[J]. Nanomaterials, 2018, 8(10): 843. doi: 10.3390/nano8100843

    CrossRef Google Scholar

    [31] Datta R S, Haque F, Mohiuddin M, et al. Highly active two dimensional α-MoO3−x for the electrocatalytic hydrogen evolution reaction[J]. J Mater Chem A, 2017, 5(46): 24223−24231. doi: 10.1039/C7TA07705J

    CrossRef Google Scholar

    [32] Shao J D, Xie H H, Huang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Nat Commun, 2016, 7: 12967. doi: 10.1038/ncomms12967

    CrossRef Google Scholar

    [33] Zhang Y M, Zhao J H, Sun H L, et al. B, N, S, Cl doped graphene quantum dots and their effects on gas-sensing properties of Ag-LaFeO3[J]. Sens Actuators B Chem, 2018, 266: 364−374. doi: 10.1016/j.snb.2018.03.109

    CrossRef Google Scholar

    [34] Zhuo S J, Shao M W, Lee S T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis[J]. ACS Nano, 2012, 6(2): 1059−1064. doi: 10.1021/nn2040395

    CrossRef Google Scholar

    [35] Das S K, Gawas R, Chakrabarty S, et al. An unexpected transformation of organic solvents into 2D fluorescent quantum dots during ultrasonication-assisted liquid-phase exfoliation[J]. J Phys Chem C, 2019, 123(41): 25412−25421. doi: 10.1021/acs.jpcc.9b03975

    CrossRef Google Scholar

    [36] Wang Y W, Liu S, Zeng B W, et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots[J]. Nanoscale, 2017, 9(14): 4683−4690. doi: 10.1039/C6NR09235G

    CrossRef Google Scholar

    [37] Sun Z B, Xie H H, Tang S Y, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angew Chem Int Ed, 2015, 54(39): 11526−11530. doi: 10.1002/anie.201506154

    CrossRef Google Scholar

    [38] Xing C Y, Huang W C, Xie Z J, et al. Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV–vis photodetector[J]. ACS Photonics, 2018, 5(2): 621−629. doi: 10.1021/acsphotonics.7b01211

    CrossRef Google Scholar

    [39] Sun Z B, Zhao Y T, Li Z B, et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer[J]. Small, 2017, 13(11): 1602896. doi: 10.1002/smll.201602896

    CrossRef Google Scholar

    [40] Wang W, Niu X Y, Qian H L, et al. Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots[J]. Nanotechnology, 2016, 27(50): 505204. doi: 10.1088/0957-4484/27/50/505204

    CrossRef Google Scholar

    [41] Bai Q, Zhang C Y, Li L, et al. Subsequent monitoring of ferric ion and ascorbic acid using graphdiyne quantum dots-based optical sensors[J]. Mikrochim Acta, 2020, 187(12): 657. doi: 10.1007/s00604-020-04624-w

    CrossRef Google Scholar

    [42] Gao L F, Xu J Y, Zhu Z Y, et al. Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response[J]. Nanoscale, 2016, 8(33): 15132−15136. doi: 10.1039/C6NR04773D

    CrossRef Google Scholar

    [43] Qian F L, Li X M, Tang L B, et al. Selenium quantum dots: preparation, structure, and properties[J]. Appl Phys Lett, 2017, 110(5): 053104. doi: 10.1063/1.4975358

    CrossRef Google Scholar

    [44] Meng S L, Chen Q Y, Lin H J, et al. Scalable production of boron quantum dots for broadband ultrafast nonlinear optical performance[J]. Nanomaterials, 2021, 11(3): 687. doi: 10.3390/nano11030687

    CrossRef Google Scholar

    [45] Zdrazil L, Zahradnicek R, Mohan R, et al. Preparation of graphene quantum dots through liquid phase exfoliation method[J]. J Lumin, 2018, 204: 203−208. doi: 10.1016/j.jlumin.2018.08.017

    CrossRef Google Scholar

    [46] Ma Q, Qiao H, Huang Z Y, et al. Photo-assisted electrocatalysis of black phosphorus quantum dots/molybdenum disulfide heterostructure for oxygen evolution reaction[J]. Appl Surf Sci, 2021, 562: 150213. doi: 10.1016/j.apsusc.2021.150213

    CrossRef Google Scholar

    [47] Du J, Zhang M, Guo Z, et al. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers[J]. Sci Rep, 2017, 7: 42357. doi: 10.1038/srep42357

    CrossRef Google Scholar

    [48] Li Y, Liu Z M, Hou Y Q, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25098−25106. doi: 10.1021/acsami.7b05824

    CrossRef Google Scholar

    [49] Gong P H, Qu Y S, Wang W, et al. Macroscale superlubricity of black phosphorus quantum dots[J]. Lubricants, 2022, 10(7): 158. doi: 10.3390/lubricants10070158

    CrossRef Google Scholar

    [50] Lu L Q, Zhu Y C, Shi C, et al. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation[J]. Carbon, 2016, 109: 373−383. doi: 10.1016/j.carbon.2016.08.023

    CrossRef Google Scholar

    [51] Wang H Q, An D, Tian P Z, et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chem Eng J, 2021, 425: 130659. doi: 10.1016/j.cej.2021.130659

    CrossRef Google Scholar

    [52] Lee M, Park Y H, Kang E B, et al. Highly efficient visible blue-emitting black phosphorus quantum dot: mussel-inspired surface functionalization for bioapplications[J]. ACS Omega, 2017, 2(10): 7096−7105. doi: 10.1021/acsomega.7b01058

    CrossRef Google Scholar

    [53] Xia X H, Liu L, Li X H, et al. Highly efficient electrocatalytic hydrogen evolution over edge-modified phosphorene quantum dot/prussian blue skeleton structure[J]. J Catal, 2019, 374: 401−408. doi: 10.1016/j.jcat.2019.05.011

    CrossRef Google Scholar

    [54] Du K X, Yang W, Deng S K, et al. High-quality black phosphorus quantum dots fabricated via microwave-tailored technology[J]. Nanomaterials, 2020, 10(1): 139. doi: 10.3390/nano10010139

    CrossRef Google Scholar

    [55] Liu S X, Li Z J, Ge Y Q, et al. Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance[J]. Photon Res, 2017, 5(6): 662−668. doi: 10.1364/PRJ.5.000662

    CrossRef Google Scholar

    [56] Shih Y W, Tseng G W, Hsieh C Y, et al. Graphene quantum dots derived from platelet graphite nanofibers by liquid-phase exfoliation[J]. Acta Mater, 2014, 78: 314−319. doi: 10.1016/j.actamat.2014.06.027

    CrossRef Google Scholar

    [57] Zuo W B, Tang L B, Xiang J Z, et al. Functionalization of graphene quantum dots by fluorine: preparation, properties, application, and their mechanisms[J]. Appl Phys Lett, 2017, 110(22): 221901. doi: 10.1063/1.4984238

    CrossRef Google Scholar

    [58] Sofer Z, Bouša D, Luxa J, et al. Few-layer black phosphorus nanoparticles[J]. Chem Commun, 2016, 52(8): 1563−1566. doi: 10.1039/C5CC09150K

    CrossRef Google Scholar

    [59] Zhao Y, Huang J, Zhang R, et al. Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing applications[J]. RSC Adv, 2020, 10(23): 13379−13385. doi: 10.1039/C9RA10900E

    CrossRef Google Scholar

    [60] Chen R Z, Zheng X, Jiang T. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots[J]. Opt Express, 2017, 25(7): 7507−7519. doi: 10.1364/OE.25.007507

    CrossRef Google Scholar

    [61] Wang C, Chen Q Y, Chen H L, et al. Boron quantum dots all-optical modulator based on efficient photothermal effect[J]. Opto-Electron Adv, 2021, 4(7): 200032. doi: 10.29026/oea.2021.200032

    CrossRef Google Scholar

    [62] Han S T, Hu L, Wang X D, et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics[J]. Adv Sci, 2017, 4(8): 1600435. doi: 10.1002/advs.201600435

    CrossRef Google Scholar

    [63] Liu S H, Lin S H, You P, et al. Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics[J]. Angew Chem Int Ed, 2017, 56(44): 13717−13721. doi: 10.1002/anie.201707510

    CrossRef Google Scholar

    [64] Chen W, Li K W, Wang Y, et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells[J]. J Phys Chem Lett, 2017, 8(3): 591−598. doi: 10.1021/acs.jpclett.6b02843

    CrossRef Google Scholar

    [65] Zhang X, Xie H M, Liu Z D, et al. Black phosphorus quantum dots[J]. Angew Chem Int Ed, 2015, 54(12): 3653−3657. doi: 10.1002/anie.201409400

    CrossRef Google Scholar

    [66] Mu X Y, Wang J Y, Bai X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice[J]. ACS Appl Mater Interfaces, 2017, 9(24): 20399−20409. doi: 10.1021/acsami.7b02900

    CrossRef Google Scholar

    [67] Yin F, Hu K, Chen S, et al. Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells[J]. J Mater Chem B, 2017, 5(27): 5433−5440. doi: 10.1039/C7TB01068K

    CrossRef Google Scholar

    [68] Lee H U, Park S Y, Lee S C, et al. Black phosphorus (BP) nanodots for potential biomedical applications[J]. Small, 2016, 12(2): 214−219. doi: 10.1002/smll.201502756

    CrossRef Google Scholar

    [69] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666−669. doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [70] Liu M L, Xu Y H, Wang Y, et al. Boron nitride quantum dots with solvent-regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications[J]. Adv Opt Mater, 2017, 5(3): 1600661. doi: 10.1002/adom.201600661

    CrossRef Google Scholar

    [71] Li H L, Tay R Y, Tsang S H, et al. Controllable synthesis of highly luminescent boron nitride quantum dots[J]. Small, 2015, 11(48): 6491−6499. doi: 10.1002/smll.201501632

    CrossRef Google Scholar

    [72] Ren J K, Stagi L, Malfatti L, et al. Engineering UV-emitting defects in h-BN nanodots by a top-down route[J]. Appl Surf Sci, 2021, 567: 150727. doi: 10.1016/j.apsusc.2021.150727

    CrossRef Google Scholar

    [73] Lei Z Y, Xu S J, Wan J X, et al. Facile preparation and multifunctional applications of boron nitride quantum dots[J]. Nanoscale, 2015, 7(45): 18902−18907. doi: 10.1039/C5NR05960G

    CrossRef Google Scholar

    [74] Kumar R, Singh R K, Yadav S K, et al. Mechanical pressure induced chemical cutting of boron nitride sheets into boron nitride quantum dots and optical properties[J]. J Alloys Compd, 2016, 683: 38−45. doi: 10.1016/j.jallcom.2016.05.073

    CrossRef Google Scholar

    [75] Zhang J H, Jing Y, Zhang P, et al. Fluorescent oxygen-doped g-C3N4 quantum dots for selective detection Fe3+ ions in cell imaging[J]. Nanomaterials, 2022, 12(11): 1826. doi: 10.3390/nano12111826

    CrossRef Google Scholar

    [76] Rong M C, Yang X H, Huang L Z, et al. Hydrogen peroxide-assisted ultrasonic synthesis of BCNO QDs for anthrax biomarker detection[J]. ACS Appl Mater Interfaces, 2019, 11(2): 2336−2343. doi: 10.1021/acsami.8b21786

    CrossRef Google Scholar

    [77] Zhang X D, Wang H X, Wang H, et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Adv Mater, 2014, 26(26): 4438−4443. doi: 10.1002/adma.201400111

    CrossRef Google Scholar

  • This review paper aims to provide a detailed introduction and summary of the research progress on the preparation of non-metal quantum dots (QDs) using the ultrasonic method, and explore their potential applications in various fields. QDs are nanomaterials with zero-dimensional structures, with grain diameters ranging from 1-20 nm. Compared to traditional materials, QDs exhibit a wide excitation spectrum, continuous distribution characteristics, symmetric and narrow emission spectra, tunable colors, high photostability, and resistance to photobleaching, making them highly attractive for applications in optoelectronic devices, solar cells, optical devices, sensors, and bioimaging. The paper first introduces the preparation methods of QDs, among which the ultrasonic method is a common "top-down" approach known for its simplicity and environmental friendliness. When the size of QDs approaches or is smaller than the exciton Bohr radius, the continuous band structure of the original material becomes quantized, resulting in significant changes in their properties. Subsequently, an overview of the research progress in the preparation of non-metal quantum dots using the ultrasonic method is presented, including the preparation methods and characterization techniques for different non-metal and non-metallic compound quantum dots. During the preparation process, the action of ultrasound, which involves the formation, growth, and collapse of bubbles, accompanied by intense shock waves, can produce small-sized nanoscale particles.

    Through a review and analysis of related studies, the following conclusions are drawn: the ultrasonic method is an effective approach for the preparation of non-metal quantum dots, offering advantages such as simplicity, low cost, controllable size, environmental friendliness, and scalability. However, there are still challenges in current research, such as controlling the size and morphology of QDs and improving their luminescence efficiency and stability. Therefore, by optimizing the preparation process of the ultrasonic method, the stability and dispersibility of QDs can be further improved, facilitating their in-depth research and application in the field of nanomaterials.

    In summary, the preparation of non-metal quantum dots using the ultrasonic method is a research area with potential and challenges. Through continuous research and exploration, along with the development of new materials, the application of new processes, and interdisciplinary collaborations, the ultrasonic method for QD preparation will have broader prospects, providing new opportunities and breakthroughs for the development of optoelectronics, energy, and biomedical fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint