Citation: | Zhang T W, Hu K, Li G B, et al. Research progress in the quantum dots of nonmetals and their compounds prepared by ultrasonic method[J]. Opto-Electron Eng, 2024, 51(4): 230319. doi: 10.12086/oee.2024.230319 |
[1] | Chung S, Revia R A, Zhang M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Adv Mater, 2021, 33(22): 1904362. doi: 10.1002/adma.201904362 |
[2] | Coles R J, Price D M, Dixon J E, et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer[J]. Nat Commun, 2016, 7: 11183. doi: 10.1038/ncomms11183 |
[3] | 叶泰康, 李德鹏, 孙小卫, 等. 量子点微显示技术研究进展[J]. 光电工程, 2022, 49(12): 220008. doi: 10.12086/oee.2022.220008 Ye T K, Li D P, Sun X W, et al. Research progress of quantum dot micro display technology[J]. Opto-Electron Eng, 2022, 49(12): 220008. doi: 10.12086/oee.2022.220008 |
[4] | Lan X Z, Voznyy O, de Arquer F P G, et al. 10.6% Certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation[J]. Nano Lett, 2016, 16(7): 4630−4634. doi: 10.1021/acs.nanolett.6b01957 |
[5] | Chen K Q, Jin W, Zhang Y P, et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering[J]. J Am Chem Soc, 2020, 142(8): 3775−3783. doi: 10.1021/jacs.9b10700 |
[6] | Wei M Y, de Arquer F P G, Walters G, et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators[J]. Nat Energy, 2019, 4(3): 197−205. doi: 10.1038/s41560-018-0313-y |
[7] | Heck M J R, Bente E A J M, Smalbrugge B, et al. Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm[J]. Opt Express, 2007, 15(25): 16292−16301. doi: 10.1364/OE.15.016292 |
[8] | Xu L M, Li J H, Cai B, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes[J]. Nat Commun, 2020, 11(1): 3902. doi: 10.1038/s41467-020-17633-3 |
[9] | Wang Y K, Yuan F L, Dong Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite[J]. Angew Chem Int Ed, 2021, 60(29): 16164−16170. doi: 10.1002/anie.202104812 |
[10] | Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736−12737. doi: 10.1021/ja040082h |
[11] | Yang S T, Wang X, Wang H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113(42): 18110−18114. doi: 10.1021/jp9085969 |
[12] | Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem, 2009, 19(4): 484−488. doi: 10.1039/B812943F |
[13] | Li X Y, Wang H Q, Shimizu Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chem Commun, 2011, 47(3): 932−934. doi: 10.1039/C0CC03552A |
[14] | Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Trans, 2012, 41(31): 9526−9531. doi: 10.1039/c2dt30985h |
[15] | Tan X Y, Li Y C, Li X H, et al. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform[J]. Chem Commun, 2015, 51(13): 2544−2546. doi: 10.1039/C4CC09332A |
[16] | Dong Y Q, Chen C Q, Zheng X T, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. J Mater Chem, 2012, 22(18): 8764−8766. doi: 10.1039/c2jm30658a |
[17] | Xu S J, Li D, Wu P Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Adv Funct Mater, 2015, 25(7): 1127−1136. doi: 10.1002/adfm.201403863 |
[18] | Liu J C, Wang N, Yu Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes[J]. Sci Adv, 2017, 3(5): e1603171. doi: 10.1126/sciadv.1603171 |
[19] | Jiang K, Wang Y H, Gao X L, et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angew Chem Int Ed, 2018, 57(21): 6216−6220. doi: 10.1002/anie.201802441 |
[20] | Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Adv Funct Mater, 2012, 22(14): 2971−2979. doi: 10.1002/adfm.201200166 |
[21] | Lv W Z, Li L, Xu M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation[J]. Adv Mater, 2019, 31(28): 1900682. doi: 10.1002/adma.201900682 |
[22] | Lin L P, Rong M C, Lu S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872−1878. doi: 10.1039/C4NR06365A |
[23] | Wang J, Fan S Y, Xia Y, et al. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3[J]. J Hazard Mater, 2020, 381: 120919. doi: 10.1016/j.jhazmat.2019.120919 |
[24] | Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): e1226419. doi: 10.1126/science.1226419 |
[25] | Chang K, Chen W X. l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720−4728. doi: 10.1021/nn200659w |
[26] | Mohiuddin M, Wang Y C, Zavabeti A, et al. Liquid phase acoustic wave exfoliation of layered MoS2: critical impact of electric field in efficiency[J]. Chem Mater, 2018, 30(16): 5593−5601. doi: 10.1021/acs.chemmater.8b01506 |
[27] | Dong L, Lin S, Yang L, et al. Spontaneous exfoliation and tailoring of MoS2 in mixed solvents[J]. Chem Commun, 2014, 50(100): 15936−15939. doi: 10.1039/C4CC07238C |
[28] | Guan G J, Wu M D, Cai Y Q, et al. Surface-mediated chemical dissolution of two-dimensional nanomaterials toward hole creation[J]. Chem Mater, 2018, 30(15): 5108−5115. doi: 10.1021/acs.chemmater.8b01540 |
[29] | Backes C, Berner N C, Chen X, et al. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2[J]. Angew Chem Int Ed, 2015, 54(9): 2638−2642. doi: 10.1002/anie.201409412 |
[30] | Zhao W Y, Jiang T, Shan Y J, et al. Direct exfoliation of natural SiO2-containing molybdenite in isopropanol: a cost efficient solution for large-scale production of MoS2 nanosheetes[J]. Nanomaterials, 2018, 8(10): 843. doi: 10.3390/nano8100843 |
[31] | Datta R S, Haque F, Mohiuddin M, et al. Highly active two dimensional α-MoO3−x for the electrocatalytic hydrogen evolution reaction[J]. J Mater Chem A, 2017, 5(46): 24223−24231. doi: 10.1039/C7TA07705J |
[32] | Shao J D, Xie H H, Huang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Nat Commun, 2016, 7: 12967. doi: 10.1038/ncomms12967 |
[33] | Zhang Y M, Zhao J H, Sun H L, et al. B, N, S, Cl doped graphene quantum dots and their effects on gas-sensing properties of Ag-LaFeO3[J]. Sens Actuators B Chem, 2018, 266: 364−374. doi: 10.1016/j.snb.2018.03.109 |
[34] | Zhuo S J, Shao M W, Lee S T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis[J]. ACS Nano, 2012, 6(2): 1059−1064. doi: 10.1021/nn2040395 |
[35] | Das S K, Gawas R, Chakrabarty S, et al. An unexpected transformation of organic solvents into 2D fluorescent quantum dots during ultrasonication-assisted liquid-phase exfoliation[J]. J Phys Chem C, 2019, 123(41): 25412−25421. doi: 10.1021/acs.jpcc.9b03975 |
[36] | Wang Y W, Liu S, Zeng B W, et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots[J]. Nanoscale, 2017, 9(14): 4683−4690. doi: 10.1039/C6NR09235G |
[37] | Sun Z B, Xie H H, Tang S Y, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angew Chem Int Ed, 2015, 54(39): 11526−11530. doi: 10.1002/anie.201506154 |
[38] | Xing C Y, Huang W C, Xie Z J, et al. Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV–vis photodetector[J]. ACS Photonics, 2018, 5(2): 621−629. doi: 10.1021/acsphotonics.7b01211 |
[39] | Sun Z B, Zhao Y T, Li Z B, et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer[J]. Small, 2017, 13(11): 1602896. doi: 10.1002/smll.201602896 |
[40] | Wang W, Niu X Y, Qian H L, et al. Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots[J]. Nanotechnology, 2016, 27(50): 505204. doi: 10.1088/0957-4484/27/50/505204 |
[41] | Bai Q, Zhang C Y, Li L, et al. Subsequent monitoring of ferric ion and ascorbic acid using graphdiyne quantum dots-based optical sensors[J]. Mikrochim Acta, 2020, 187(12): 657. doi: 10.1007/s00604-020-04624-w |
[42] | Gao L F, Xu J Y, Zhu Z Y, et al. Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response[J]. Nanoscale, 2016, 8(33): 15132−15136. doi: 10.1039/C6NR04773D |
[43] | Qian F L, Li X M, Tang L B, et al. Selenium quantum dots: preparation, structure, and properties[J]. Appl Phys Lett, 2017, 110(5): 053104. doi: 10.1063/1.4975358 |
[44] | Meng S L, Chen Q Y, Lin H J, et al. Scalable production of boron quantum dots for broadband ultrafast nonlinear optical performance[J]. Nanomaterials, 2021, 11(3): 687. doi: 10.3390/nano11030687 |
[45] | Zdrazil L, Zahradnicek R, Mohan R, et al. Preparation of graphene quantum dots through liquid phase exfoliation method[J]. J Lumin, 2018, 204: 203−208. doi: 10.1016/j.jlumin.2018.08.017 |
[46] | Ma Q, Qiao H, Huang Z Y, et al. Photo-assisted electrocatalysis of black phosphorus quantum dots/molybdenum disulfide heterostructure for oxygen evolution reaction[J]. Appl Surf Sci, 2021, 562: 150213. doi: 10.1016/j.apsusc.2021.150213 |
[47] | Du J, Zhang M, Guo Z, et al. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers[J]. Sci Rep, 2017, 7: 42357. doi: 10.1038/srep42357 |
[48] | Li Y, Liu Z M, Hou Y Q, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25098−25106. doi: 10.1021/acsami.7b05824 |
[49] | Gong P H, Qu Y S, Wang W, et al. Macroscale superlubricity of black phosphorus quantum dots[J]. Lubricants, 2022, 10(7): 158. doi: 10.3390/lubricants10070158 |
[50] | Lu L Q, Zhu Y C, Shi C, et al. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation[J]. Carbon, 2016, 109: 373−383. doi: 10.1016/j.carbon.2016.08.023 |
[51] | Wang H Q, An D, Tian P Z, et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chem Eng J, 2021, 425: 130659. doi: 10.1016/j.cej.2021.130659 |
[52] | Lee M, Park Y H, Kang E B, et al. Highly efficient visible blue-emitting black phosphorus quantum dot: mussel-inspired surface functionalization for bioapplications[J]. ACS Omega, 2017, 2(10): 7096−7105. doi: 10.1021/acsomega.7b01058 |
[53] | Xia X H, Liu L, Li X H, et al. Highly efficient electrocatalytic hydrogen evolution over edge-modified phosphorene quantum dot/prussian blue skeleton structure[J]. J Catal, 2019, 374: 401−408. doi: 10.1016/j.jcat.2019.05.011 |
[54] | Du K X, Yang W, Deng S K, et al. High-quality black phosphorus quantum dots fabricated via microwave-tailored technology[J]. Nanomaterials, 2020, 10(1): 139. doi: 10.3390/nano10010139 |
[55] | Liu S X, Li Z J, Ge Y Q, et al. Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance[J]. Photon Res, 2017, 5(6): 662−668. doi: 10.1364/PRJ.5.000662 |
[56] | Shih Y W, Tseng G W, Hsieh C Y, et al. Graphene quantum dots derived from platelet graphite nanofibers by liquid-phase exfoliation[J]. Acta Mater, 2014, 78: 314−319. doi: 10.1016/j.actamat.2014.06.027 |
[57] | Zuo W B, Tang L B, Xiang J Z, et al. Functionalization of graphene quantum dots by fluorine: preparation, properties, application, and their mechanisms[J]. Appl Phys Lett, 2017, 110(22): 221901. doi: 10.1063/1.4984238 |
[58] | Sofer Z, Bouša D, Luxa J, et al. Few-layer black phosphorus nanoparticles[J]. Chem Commun, 2016, 52(8): 1563−1566. doi: 10.1039/C5CC09150K |
[59] | Zhao Y, Huang J, Zhang R, et al. Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing applications[J]. RSC Adv, 2020, 10(23): 13379−13385. doi: 10.1039/C9RA10900E |
[60] | Chen R Z, Zheng X, Jiang T. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots[J]. Opt Express, 2017, 25(7): 7507−7519. doi: 10.1364/OE.25.007507 |
[61] | Wang C, Chen Q Y, Chen H L, et al. Boron quantum dots all-optical modulator based on efficient photothermal effect[J]. Opto-Electron Adv, 2021, 4(7): 200032. doi: 10.29026/oea.2021.200032 |
[62] | Han S T, Hu L, Wang X D, et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics[J]. Adv Sci, 2017, 4(8): 1600435. doi: 10.1002/advs.201600435 |
[63] | Liu S H, Lin S H, You P, et al. Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics[J]. Angew Chem Int Ed, 2017, 56(44): 13717−13721. doi: 10.1002/anie.201707510 |
[64] | Chen W, Li K W, Wang Y, et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells[J]. J Phys Chem Lett, 2017, 8(3): 591−598. doi: 10.1021/acs.jpclett.6b02843 |
[65] | Zhang X, Xie H M, Liu Z D, et al. Black phosphorus quantum dots[J]. Angew Chem Int Ed, 2015, 54(12): 3653−3657. doi: 10.1002/anie.201409400 |
[66] | Mu X Y, Wang J Y, Bai X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice[J]. ACS Appl Mater Interfaces, 2017, 9(24): 20399−20409. doi: 10.1021/acsami.7b02900 |
[67] | Yin F, Hu K, Chen S, et al. Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells[J]. J Mater Chem B, 2017, 5(27): 5433−5440. doi: 10.1039/C7TB01068K |
[68] | Lee H U, Park S Y, Lee S C, et al. Black phosphorus (BP) nanodots for potential biomedical applications[J]. Small, 2016, 12(2): 214−219. doi: 10.1002/smll.201502756 |
[69] | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666−669. doi: 10.1126/science.1102896 |
[70] | Liu M L, Xu Y H, Wang Y, et al. Boron nitride quantum dots with solvent-regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications[J]. Adv Opt Mater, 2017, 5(3): 1600661. doi: 10.1002/adom.201600661 |
[71] | Li H L, Tay R Y, Tsang S H, et al. Controllable synthesis of highly luminescent boron nitride quantum dots[J]. Small, 2015, 11(48): 6491−6499. doi: 10.1002/smll.201501632 |
[72] | Ren J K, Stagi L, Malfatti L, et al. Engineering UV-emitting defects in h-BN nanodots by a top-down route[J]. Appl Surf Sci, 2021, 567: 150727. doi: 10.1016/j.apsusc.2021.150727 |
[73] | Lei Z Y, Xu S J, Wan J X, et al. Facile preparation and multifunctional applications of boron nitride quantum dots[J]. Nanoscale, 2015, 7(45): 18902−18907. doi: 10.1039/C5NR05960G |
[74] | Kumar R, Singh R K, Yadav S K, et al. Mechanical pressure induced chemical cutting of boron nitride sheets into boron nitride quantum dots and optical properties[J]. J Alloys Compd, 2016, 683: 38−45. doi: 10.1016/j.jallcom.2016.05.073 |
[75] | Zhang J H, Jing Y, Zhang P, et al. Fluorescent oxygen-doped g-C3N4 quantum dots for selective detection Fe3+ ions in cell imaging[J]. Nanomaterials, 2022, 12(11): 1826. doi: 10.3390/nano12111826 |
[76] | Rong M C, Yang X H, Huang L Z, et al. Hydrogen peroxide-assisted ultrasonic synthesis of BCNO QDs for anthrax biomarker detection[J]. ACS Appl Mater Interfaces, 2019, 11(2): 2336−2343. doi: 10.1021/acsami.8b21786 |
[77] | Zhang X D, Wang H X, Wang H, et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Adv Mater, 2014, 26(26): 4438−4443. doi: 10.1002/adma.201400111 |
This review paper aims to provide a detailed introduction and summary of the research progress on the preparation of non-metal quantum dots (QDs) using the ultrasonic method, and explore their potential applications in various fields. QDs are nanomaterials with zero-dimensional structures, with grain diameters ranging from 1-20 nm. Compared to traditional materials, QDs exhibit a wide excitation spectrum, continuous distribution characteristics, symmetric and narrow emission spectra, tunable colors, high photostability, and resistance to photobleaching, making them highly attractive for applications in optoelectronic devices, solar cells, optical devices, sensors, and bioimaging. The paper first introduces the preparation methods of QDs, among which the ultrasonic method is a common "top-down" approach known for its simplicity and environmental friendliness. When the size of QDs approaches or is smaller than the exciton Bohr radius, the continuous band structure of the original material becomes quantized, resulting in significant changes in their properties. Subsequently, an overview of the research progress in the preparation of non-metal quantum dots using the ultrasonic method is presented, including the preparation methods and characterization techniques for different non-metal and non-metallic compound quantum dots. During the preparation process, the action of ultrasound, which involves the formation, growth, and collapse of bubbles, accompanied by intense shock waves, can produce small-sized nanoscale particles.
Through a review and analysis of related studies, the following conclusions are drawn: the ultrasonic method is an effective approach for the preparation of non-metal quantum dots, offering advantages such as simplicity, low cost, controllable size, environmental friendliness, and scalability. However, there are still challenges in current research, such as controlling the size and morphology of QDs and improving their luminescence efficiency and stability. Therefore, by optimizing the preparation process of the ultrasonic method, the stability and dispersibility of QDs can be further improved, facilitating their in-depth research and application in the field of nanomaterials.
In summary, the preparation of non-metal quantum dots using the ultrasonic method is a research area with potential and challenges. Through continuous research and exploration, along with the development of new materials, the application of new processes, and interdisciplinary collaborations, the ultrasonic method for QD preparation will have broader prospects, providing new opportunities and breakthroughs for the development of optoelectronics, energy, and biomedical fields.
Mechanism diagram of G QDs prepared by the ultrasonic method
Preparation and characterisation of BP QDs. (a) and (b) TEM and HRTEM images of the BP QD, respectively [62]; (c) FFT pattern of the white highlights in (b) [62]; (d) , (e) and (f) are the SEM and TEM images of BP QDs/PLGA NSs and the absorption spectra dispersed in PBS for 0 h, 24 h and 8 weeks, respectively[32]; (g) and (h) are the pictures of BP QDs (Ⅰ) and PEG modified (Ⅱ) in water or PBS solution, respectively, and the absorption spectra of different concentrations of PEG modified BP QDs dispersed in water solution[37]; (i) Ultraviolet visible absorption spectrum of BP QDs[65]
Preparation and characterization of elemental semiconductor QDs. (a) Schematic diagram of G QDs prepared by ultrasonic stripping [50]; (b) Ultraviolet-visible absorption spectra of G QDs[45]; (c) Photoluminescence spectra and excitation spectra at different excitation wavelengths[45]; (d) and (e) are TEM and HRTEM images of C QDs, respectively[35]; (f) The UV-visible absorption spectrum of CQDs dispersion along with non-sonicated acetonitrile as solvent background[35]; (g) Photographs of C QDs fluorescence excited at different excitation wavelengths[35]; (h) and (i) are HRTEM image and UV-vis absorption spectra of B QDs, respectively[44]
Preparation and characterization of nonmetallic compounds QDs. (a) Schematic diagram of BN QDs preparation[73]; (b) Ultraviolet-visible absorption (black), PLE (red) and PL (blue) spectra of BN QDs[71]; (c), (d) and (e) are the ultraviolet-visible absorption spectra of organic solvents dispersed in ethanol, DMF, and NMP, respectively[70]; (f) Ultraviolet-visible absorption and emission spectra of OCNQDs[75]; (g) Ultraviolet-visible absorption spectra of BCNO QDs[76]; (h) and (i) are the Ultraviolet-visible spectra of g-C3N4 QDs and the relationship between PL intensity and UV illumination time, respectively[77]
Applications of QDs lasers. (a) Configuration of the pulsed laser or ultrashort pulsed laser based on GR-BP[55]; (b) and (c) are output power and pulse energy as pump power functions, and output repetition rate and pulse duration as pump power functions, respectively[55]; (d) Schematic diagram of ultrafast Erbium-doped fiber laser based on microfiber P QD-SA[47]; (e) and (f) are optical spectra and soliton spectra, respectively[47]; (g) Experimental diagram of all-optical active Q-switched lasers based on B QDs[61]; (h) and (i) are the state and output spectra of CW and Q-switched pulse lasers, respectively[61]
Optoelectronic device applications of QDs. (a) OPV device structure on the ITO glass substrate[63]; (b) and (c) are the UV visible absorption spectra and PL spectra of BP QDs under different size conditions, respectively[63]; (d) and (e) are respectively the J-V characteristic curves and EQEs measurements of OPVs with different concentrations of BP QD[63]; (f) and (g) are respectively the device structure diagram of p-i-n plane HPSC and the energy level diagram of each layer in the device[64]; (h) SEM diagram of the HPSCs structure[64]; (i) J-V characteristic curve of HPSCs with and without BP QDs interlayer[64]