Citation: | Huang X, Shi Z Y, Song M X, et al. Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films[J]. Opto-Electron Eng, 2024, 51(6): 240048. doi: 10.12086/oee.2024.240048 |
[1] | García-Lojo D, Núñez-Sánchez S, Gómez-Graña S, et al. Plasmonic supercrystals[J]. Acc Chem Res, 2019, 52(7): 1855−1864. doi: 10.1021/acs.accounts.9b00213 |
[2] | Ross M B, Mirkin C A, Schatz G C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures[J]. J. Phys Chem C, 2016, 120(2): 816−830. doi: 10.1021/acs.jpcc.5b10800 |
[3] | Mueller N S, Okamura Y, Vieira B G M, et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals[J]. Nature, 2020, 583(7818): 780−784. doi: 10.1038/s41586-020-2508-1 |
[4] | Solís D M, Taboada J M, Obelleiro F, et al. Toward ultimate nanoplasmonics modeling[J]. ACS Nano, 2014, 8(8): 7559−7570. doi: 10.1021/nn5037703 |
[5] | Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla R A. Fabrication of plasmonic supercrystals and their SERS enhancing properties[J]. ACS Omega, 2020, 5(40): 25485−25492. doi: 10.1021/acsomega.0c03412 |
[6] | Palmer S J, Xiao X F, Pazos-Perez N, et al. Extraordinarily transparent compact metallic metamaterials[J]. Nat Commun, 2019, 10(1): 2118. doi: 10.1038/s41467-019-09939-8 |
[7] | Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287(5460): 1989−1992. doi: 10.1126/science.287.5460.1989 |
[8] | Shevchenko E V, Ringler M, Schwemer A, et al. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties[J]. J Am Chem Soc, 2008, 130(11): 3274−3275. doi: 10.1021/ja710619s |
[9] | Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers[J]. Nature Materials, 2006, 5(4): 265−270. doi: 10.1038/nmat1611 |
[10] | Vieira B G M, Mueller N S, Barros E B, et al. Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers[J]. J Phys Chem C, 2019, 123(29): 17951−17960. doi: 10.1021/acs.jpcc.9b03859 |
[11] | Mueller N S, Vieira B G M, Höing D, et al. Direct optical excitation of dark plasmons for hot electron generation[J]. Faraday Discuss, 2019, 214(214): 159−173. doi: 10.1039/C8FD00149A |
[12] | Mueller N S, Vieira B G M, Schulz F, et al. Dark interlayer plasmons in colloidal gold nanoparticle bi- and few-layers[J]. ACS Photonics, 2018, 5(10): 3962−3969. doi: 10.1021/acsphotonics.8b00898 |
[13] | Tong J C, Suo F, Ma J H Z, et al. Surface plasmon enhanced infrared photodetection[J]. Opto-Electron Adv, 2019, 2(1): 180026. doi: 10.29026/oea.2019.180026 |
[14] | Chiu C Y, Chen C K, Chang C W, et al. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties[J]. J Am Chem Soc, 2015, 137(6): 2265−2275. doi: 10.1021/ja509044q |
[15] | Gómez-Graña S, Le Beulze A. Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies[J]. Mater Horiz, 2016, 3(6): 596−601. doi: 10.1039/C6MH00270F |
[16] | Alvarez-Puebla R A, Agarwal A, Manna P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157−8161. doi: 10.1073/pnas.1016530108 |
[17] | Alba M, Pazos-Perez N, Vaz B, et al. Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering[J]. Angew Chem Int Ed, 2013, 52(25): 6459−6463. doi: 10.1002/anie.201302285 |
[18] | Yi C L, Liu H, Zhang S Y, et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry[J]. Science, 2020, 369(6509): 1369−1374. doi: 10.1126/science.aba8653 |
[19] | Chakraborty I N, Roy P, Rao A, et al. The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots[J]. J Mater Chem A, 2021, 9(12): 7422−7457. doi: 10.1039/D0TA12623C |
[20] | Roy P, Devatha G, Roy S, et al. Electrostatically driven resonance energy transfer in an all-quantum dot based donor-acceptor system[J]. J Phys Chem Lett, 2020, 11(13): 5354−5360. doi: 10.1021/acs.jpclett.0c01360 |
[21] | Bai P, Yang S, Bao W, et al. Diversifying nanoparticle assemblies in supramolecule nanocomposites via cylindrical confinement[J]. Nano Lett, 2017, 17(11): 6847−6854. doi: 10.1021/acs.nanolett.7b03131 |
[22] | Macfarlane R J, Lee B, Jones M R, et al. Nanoparticle superlattice engineering with DNA[J]. Science, 2011, 334(6053): 204−208. doi: 10.1126/science.1210493 |
[23] | Auyeung E, Li T I N G, Senesi A J, et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra[J]. Nature, 2014, 505(7481): 73−77. doi: 10.1038/nature12739 |
[24] | Schulz F, Pavelka O, Lehmkühler F, et al. Structural order in plasmonic superlattices[J]. Nat Commun, 2020, 11(1): 3821. doi: 10.1038/s41467-020-17632-4 |
[25] | Song L P, Xu B B, Cheng Q, et al. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology[J]. Sci Adv, 2021, 7(52): eabk2852. doi: 10.1126/sciadv.abk2852 |
[26] | Zheng Y Q, Zhong X L, Li Z Y, et al. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm[J]. Part Part Syst Char, 2014, 31(2): 266−273. doi: 10.1002/ppsc.201300256 |
[27] | Sun Q, Aguila B, Perman J A, et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 2018, 4(7): 1726−1739. doi: 10.1016/j.chempr.2018.05.020 |
[28] | 韩莹莹, 陈盼盼, 王曼, 等. 基于悬链线纳米粒子超构表面的线偏振光SPPs定向激发[J]. 光电工程, 2022, 49(10): 220105. doi: 10.12086/oee.2022.220105 Han Y Y, Chen P P, Wang M, et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220105. doi: 10.12086/oee.2022.220105 |
With the deepening development of nanotechnology, scientific research has increasingly focused on the unique photoelectric response properties of self-assembled noble metal nanoparticle superlattice structures. These structures effectively confine and enhance light fields, giving rise to a variety of plasmonic modes with significant implications for applications in spectroscopy enhancement, biosensing, and the development of nanophotonic devices. However, current self-assembly techniques face challenges in fabricating large-area, multilayer, and evenly distributed nanoparticle superlattice films, which limits their practical advancement. This study addresses this issue by introducing an innovative wetting-enhanced interfacial self-assembly method. This technique ensures rapid and uniform deposition over a large area while forming single-layer nanoparticle films. By employing a layer-by-layer stacking approach, the researchers successfully prepared a series of gold nanoparticle superlattice films with varying numbers of layers. Experimental measurements and theoretical computations of transmission/reflection spectra confirm that these films can effectively excite plasmonic modes. Furthermore, as the number of superlattice layers increases, higher-order plasmonic modes are also efficiently excited. Additionally, precise tuning of the gold nanoparticle size enables accurate control over the resonance peak positions of plasmonic modes. In summary, this study presents a novel approach for large-scale fabrication of high-quality multilayer gold nanoparticle superlattice films and reveals the critical role of nanoparticle size and superlattice layer count in governing plasmonic behavior. This research paves the way for the design and construction of advanced micro- and nanophotonic devices that leverage surface plasmon effects, thereby opening up new avenues in the field.
(a) Schematic illustration of the self-assembly and film transfer process of gold nanoparticles (NPs) induced by PFT at the water-n-hexane interface; (b) Scanning electron microscope (SEM) images of a monolayer gold nanoparticle film with a particle size of 20 nm and interparticle spacing of 1-2 nm. Scale bars are 1 μm, 200 nm, and 50 nm, respectively. Inset: Image of a monolayer gold nanoparticle film in a beaker; (c-f) Images of gold nanoparticle superlattice films with different numbers of layers transferred onto a PDMS substrate using a layer-by-layer stacking method. Images from (c) to (f) represent one layer to four layers, respectively
Reflectance spectra (a) and transmission spectra (b) of gold nanoparticle films with a size of 20 nm, from one to six layers, with the solid black line indicating the simulation results and the red line indicating the experimental measurements
Near-field distribution of a thin film of gold nanoparticles with a diameter of 20 nm and an interparticle spacing of 1 nm in (a) a single layer, (b) a bilayer, (c) a six-layer (λ = 638 nm), and (d) a six-layer (λ = 778 nm). The plasma pattern of current distribution through the interior of the nanoparticles is demonstrated next to it, and the dipole moments in the particles of each layer are indicated by the white arrows
Reflectance spectra of gold nanoparticle superlattice films with different numbers of layers and diameters (20 nm - black curve, 25 nm - red curve, 30 nm - blue curve). (a) Experimental measurement results; (b) Numerical simulation results