Huang X, Shi Z Y, Song M X, et al. Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films[J]. Opto-Electron Eng, 2024, 51(6): 240048. doi: 10.12086/oee.2024.240048
Citation: Huang X, Shi Z Y, Song M X, et al. Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films[J]. Opto-Electron Eng, 2024, 51(6): 240048. doi: 10.12086/oee.2024.240048

Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films

    Fund Project: Project supported by National Natural Science Foundation of China (11804408),and Basic Research Programme of Shanxi Province(202203021221080)
More Information
  • Self-assembly of noble metal nanoparticles into superlattices can couple with plasmonic modes and light fields, holding significant promise in enhanced spectroscopy and sensing applications. However, controlling the number of layers in these self-assembled superlattice films is challenging, and small sample sizes limit their potential applications. In this study, based on a wetting-enhanced interfacial self-assembly method, we demonstrate the rapid and large-scale fabrication of monolayer densely packed nanoparticle films. Additionally, a layer-by-layer stacking method is employed to fabricate large-area, uniformly distributed gold nanoparticle superlattice films with different numbers of layers. Both experimental and computational transmission/reflection spectra indicate that the prepared superlattice samples effectively excite plasmonic modes, and higher-order plasmonic modes can also be efficiently excited with increasing superlattice layers. Moreover, adjusting the nanoparticle size enables effective modulation of the resonance peak positions of plasmonic modes. These findings provide an effective approach for the large-scale fabrication of high-quality nanoparticle superlattice films, holding promise for the design of high-performance micro/nano photonic devices.
  • 加载中
  • [1] García-Lojo D, Núñez-Sánchez S, Gómez-Graña S, et al. Plasmonic supercrystals[J]. Acc Chem Res, 2019, 52(7): 1855−1864. doi: 10.1021/acs.accounts.9b00213

    CrossRef Google Scholar

    [2] Ross M B, Mirkin C A, Schatz G C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures[J]. J. Phys Chem C, 2016, 120(2): 816−830. doi: 10.1021/acs.jpcc.5b10800

    CrossRef Google Scholar

    [3] Mueller N S, Okamura Y, Vieira B G M, et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals[J]. Nature, 2020, 583(7818): 780−784. doi: 10.1038/s41586-020-2508-1

    CrossRef Google Scholar

    [4] Solís D M, Taboada J M, Obelleiro F, et al. Toward ultimate nanoplasmonics modeling[J]. ACS Nano, 2014, 8(8): 7559−7570. doi: 10.1021/nn5037703

    CrossRef Google Scholar

    [5] Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla R A. Fabrication of plasmonic supercrystals and their SERS enhancing properties[J]. ACS Omega, 2020, 5(40): 25485−25492. doi: 10.1021/acsomega.0c03412

    CrossRef Google Scholar

    [6] Palmer S J, Xiao X F, Pazos-Perez N, et al. Extraordinarily transparent compact metallic metamaterials[J]. Nat Commun, 2019, 10(1): 2118. doi: 10.1038/s41467-019-09939-8

    CrossRef Google Scholar

    [7] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287(5460): 1989−1992. doi: 10.1126/science.287.5460.1989

    CrossRef Google Scholar

    [8] Shevchenko E V, Ringler M, Schwemer A, et al. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties[J]. J Am Chem Soc, 2008, 130(11): 3274−3275. doi: 10.1021/ja710619s

    CrossRef Google Scholar

    [9] Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers[J]. Nature Materials, 2006, 5(4): 265−270. doi: 10.1038/nmat1611

    CrossRef Google Scholar

    [10] Vieira B G M, Mueller N S, Barros E B, et al. Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers[J]. J Phys Chem C, 2019, 123(29): 17951−17960. doi: 10.1021/acs.jpcc.9b03859

    CrossRef Google Scholar

    [11] Mueller N S, Vieira B G M, Höing D, et al. Direct optical excitation of dark plasmons for hot electron generation[J]. Faraday Discuss, 2019, 214(214): 159−173. doi: 10.1039/C8FD00149A

    CrossRef Google Scholar

    [12] Mueller N S, Vieira B G M, Schulz F, et al. Dark interlayer plasmons in colloidal gold nanoparticle bi- and few-layers[J]. ACS Photonics, 2018, 5(10): 3962−3969. doi: 10.1021/acsphotonics.8b00898

    CrossRef Google Scholar

    [13] Tong J C, Suo F, Ma J H Z, et al. Surface plasmon enhanced infrared photodetection[J]. Opto-Electron Adv, 2019, 2(1): 180026. doi: 10.29026/oea.2019.180026

    CrossRef Google Scholar

    [14] Chiu C Y, Chen C K, Chang C W, et al. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties[J]. J Am Chem Soc, 2015, 137(6): 2265−2275. doi: 10.1021/ja509044q

    CrossRef Google Scholar

    [15] Gómez-Graña S, Le Beulze A. Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies[J]. Mater Horiz, 2016, 3(6): 596−601. doi: 10.1039/C6MH00270F

    CrossRef Google Scholar

    [16] Alvarez-Puebla R A, Agarwal A, Manna P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157−8161. doi: 10.1073/pnas.1016530108

    CrossRef Google Scholar

    [17] Alba M, Pazos-Perez N, Vaz B, et al. Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering[J]. Angew Chem Int Ed, 2013, 52(25): 6459−6463. doi: 10.1002/anie.201302285

    CrossRef Google Scholar

    [18] Yi C L, Liu H, Zhang S Y, et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry[J]. Science, 2020, 369(6509): 1369−1374. doi: 10.1126/science.aba8653

    CrossRef Google Scholar

    [19] Chakraborty I N, Roy P, Rao A, et al. The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots[J]. J Mater Chem A, 2021, 9(12): 7422−7457. doi: 10.1039/D0TA12623C

    CrossRef Google Scholar

    [20] Roy P, Devatha G, Roy S, et al. Electrostatically driven resonance energy transfer in an all-quantum dot based donor-acceptor system[J]. J Phys Chem Lett, 2020, 11(13): 5354−5360. doi: 10.1021/acs.jpclett.0c01360

    CrossRef Google Scholar

    [21] Bai P, Yang S, Bao W, et al. Diversifying nanoparticle assemblies in supramolecule nanocomposites via cylindrical confinement[J]. Nano Lett, 2017, 17(11): 6847−6854. doi: 10.1021/acs.nanolett.7b03131

    CrossRef Google Scholar

    [22] Macfarlane R J, Lee B, Jones M R, et al. Nanoparticle superlattice engineering with DNA[J]. Science, 2011, 334(6053): 204−208. doi: 10.1126/science.1210493

    CrossRef Google Scholar

    [23] Auyeung E, Li T I N G, Senesi A J, et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra[J]. Nature, 2014, 505(7481): 73−77. doi: 10.1038/nature12739

    CrossRef Google Scholar

    [24] Schulz F, Pavelka O, Lehmkühler F, et al. Structural order in plasmonic superlattices[J]. Nat Commun, 2020, 11(1): 3821. doi: 10.1038/s41467-020-17632-4

    CrossRef Google Scholar

    [25] Song L P, Xu B B, Cheng Q, et al. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology[J]. Sci Adv, 2021, 7(52): eabk2852. doi: 10.1126/sciadv.abk2852

    CrossRef Google Scholar

    [26] Zheng Y Q, Zhong X L, Li Z Y, et al. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm[J]. Part Part Syst Char, 2014, 31(2): 266−273. doi: 10.1002/ppsc.201300256

    CrossRef Google Scholar

    [27] Sun Q, Aguila B, Perman J A, et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 2018, 4(7): 1726−1739. doi: 10.1016/j.chempr.2018.05.020

    CrossRef Google Scholar

    [28] 韩莹莹, 陈盼盼, 王曼, 等. 基于悬链线纳米粒子超构表面的线偏振光SPPs定向激发[J]. 光电工程, 2022, 49(10): 220105. doi: 10.12086/oee.2022.220105

    CrossRef Google Scholar

    Han Y Y, Chen P P, Wang M, et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220105. doi: 10.12086/oee.2022.220105

    CrossRef Google Scholar

  • With the deepening development of nanotechnology, scientific research has increasingly focused on the unique photoelectric response properties of self-assembled noble metal nanoparticle superlattice structures. These structures effectively confine and enhance light fields, giving rise to a variety of plasmonic modes with significant implications for applications in spectroscopy enhancement, biosensing, and the development of nanophotonic devices. However, current self-assembly techniques face challenges in fabricating large-area, multilayer, and evenly distributed nanoparticle superlattice films, which limits their practical advancement. This study addresses this issue by introducing an innovative wetting-enhanced interfacial self-assembly method. This technique ensures rapid and uniform deposition over a large area while forming single-layer nanoparticle films. By employing a layer-by-layer stacking approach, the researchers successfully prepared a series of gold nanoparticle superlattice films with varying numbers of layers. Experimental measurements and theoretical computations of transmission/reflection spectra confirm that these films can effectively excite plasmonic modes. Furthermore, as the number of superlattice layers increases, higher-order plasmonic modes are also efficiently excited. Additionally, precise tuning of the gold nanoparticle size enables accurate control over the resonance peak positions of plasmonic modes. In summary, this study presents a novel approach for large-scale fabrication of high-quality multilayer gold nanoparticle superlattice films and reveals the critical role of nanoparticle size and superlattice layer count in governing plasmonic behavior. This research paves the way for the design and construction of advanced micro- and nanophotonic devices that leverage surface plasmon effects, thereby opening up new avenues in the field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint