Citation: | Chen Z Y, Liu H T, Wu X H, et al. Progress in the research of directed thermal radiation[J]. Opto-Electron Eng, 2024, 51(9): 240128. doi: 10.12086/oee.2024.240128 |
[1] | Inoue T, de Zoysa M, Asano T, et al. Realization of dynamic thermal emission control[J]. Nat Mater, 2014, 13(10): 928−931. doi: 10.1038/nmat4043 |
[2] | Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Adv Mater, 2017, 29(39): 1701275. doi: 10.1002/adma.201701275 |
[3] | Beenakker C W J. Thermal radiation and amplified spontaneous emission from a random medium[J]. Phys Rev Lett, 1998, 81(9): 1829−1832. doi: 10.1103/PhysRevLett.81.1829 |
[4] | Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Appl Phys Lett, 2011, 98(24): 241105. doi: 10.1063/1.3600779 |
[5] | Jung D, Bank S, Lee M L, et al. Next-generation mid-infrared sources[J]. J Opt, 2017, 19(12): 123001. doi: 10.1088/2040-8986/aa939b |
[6] | Palchetti L, Di Natale G, Bianchini G. Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission[J]. J Geophys Res Atmos, 2016, 121(18): 10804−10819. doi: 10.1002/2016JD025162 |
[7] | Fu Z, Zhong D, et al. Scalable asymmetric fabric evaporator for solar desalination and thermoelectricity generation[J]. Adv Sci, 2024, 20: e2406474. doi: 10.1002/advs.202406474 |
[8] | Zhang R, Song Z, et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding[J]. Light Sci Appl, 2024, 13: 223. doi: 10.1038/s41377-024-01541-y |
[9] | Xu G, Kang Q, et al. Inverse-design laser-infrared compatible stealth with thermal management enabled by wavelength-selective thermal emitter[J]. Appl Therm Eng, 2024, 255: 124063. doi: 10.1016/j.applthermaleng.2024.124063 |
[10] | Xu Z Q, Luo H, Zhu H Z, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Lett, 2021, 21(12): 5269−5276. doi: 10.1021/acs.nanolett.1c01396 |
[11] | Pralle M U, Moelders N, McNeal M P, et al. Photonic crystal enhanced narrow-band infrared emitters[J]. Appl Phys Lett, 2002, 81(25): 4685−4687. doi: 10.1063/1.1526919 |
[12] | Liu X L, Tyler T, Starr T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Phys Rev Lett, 2011, 107(4): 045901. doi: 10.1103/PhysRevLett.107.045901 |
[13] | Morsy A M, Barako M T, Jankovic V, et al. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films[J]. Sci Rep, 2020, 10(1): 13964. doi: 10.1038/s41598-020-70931-0 |
[14] | Costantini D, Lefebvre A, Coutrot A L, et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Phys Rev Appl, 2015, 4(1): 014023. doi: 10.1103/PhysRevApplied.4.014023 |
[15] | Shchegrov A V, Joulain K, Carminati R, et al. Near-field spectral effects due to electromagnetic surface excitations[J]. Phys Rev Lett, 2000, 85(7): 1548−1551. doi: 10.1103/PhysRevLett.85.1548 |
[16] | Carminati R, Greffet J J. Near-field effects in spatial coherence of thermal sources[J]. Phys Rev Lett, 1999, 82(8): 1660−1663. doi: 10.1103/PhysRevLett.82.1660 |
[17] | Wolf E. Non-cosmological redshifts of spectral lines[J]. Nature, 1987, 326(6111): 363−365. doi: 10.1038/326363a0 |
[18] | Wolf E, James D F V. Correlation-induced spectral changes[J]. Rep Prog Phys, 1996, 59(6): 771−818. doi: 10.1088/0034-4885/59/6/002 |
[19] | Le Gall J, Olivier M, Greffet J J. Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton[J]. Phys Rev B, 1997, 55(15): 10105−10114. doi: 10.1103/PhysRevB.55.10105 |
[20] | Greffet J J, Carminati R, Joulain K, et al. Coherent emission of light by thermal sources[J]. Nature, 2002, 416(6876): 61−64. doi: 10.1038/416061a |
[21] | Park J H, Han S E, Nagpal P, et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes[J]. ACS Photon, 2016, 3(3): 494−500. doi: 10.1021/acsphotonics.6b00022 |
[22] | Zhang X, Liu H, Zhang Z G, et al. Controlling thermal emission of phonon by magnetic metasurfaces[J]. Sci Rep, 2017, 7: 41858. doi: 10.1038/srep41858 |
[23] | Zhang X, Zhang Z G, Wang Q, et al. Controlling thermal emission by parity-symmetric fano resonance of optical absorbers in metasurfaces[J]. ACS Photon, 2019, 6(11): 2671−2676. doi: 10.1021/acsphotonics.9b00024 |
[24] | De Zoysa M, Asano T, Mochizuki K, et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nat Photon, 2012, 6(8): 535−539. doi: 10.1038/nphoton.2012.146 |
[25] | Liu X X, Li Z W, Wen Z J, et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 2019, 11(42): 19742−19750. doi: 10.1039/C9NR06181A |
[26] | Qu Y R, Pan M Y, Qiu M. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources[J]. Phys Rev Appl, 2020, 13(6): 064052. doi: 10.1103/PhysRevApplied.13.064052 |
[27] | Zhu L X, Liu F Y, Lin H T, et al. Angle-selective perfect absorption with two-dimensional materials[J]. Light Sci Appl, 2016, 5(3): e16052. doi: 10.1038/lsa.2016.52 |
[28] | Miller D A B, Zhu L X, Fan S H. Universal modal radiation laws for all thermal emitters[J]. Proc Natl Acad Sci USA, 2017, 114(17): 4336−4341. doi: 10.1073/pnas.1701606114 |
[29] | Zhu L X, Fan S H. Near-complete violation of detailed balance in thermal radiation[J]. Phys Rev B, 2014, 90(22): 220301(R). doi: 10.1103/PhysRevB.90.220301 |
[30] | Zhao B, Shi Y, Wang J H, et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field[J]. Opt Lett, 2019, 44(17): 4203−4206. doi: 10.1364/OL.44.004203 |
[31] | Zhao B, Guo C, Garcia C A C, et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals[J]. Nano Lett, 2020, 20(3): 1923−1927. doi: 10.1021/acs.nanolett.9b05179 |
[32] | Tsurimaki Y, Qian X, Pajovic S, et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking[J]. Phys Rev B, 2020, 101(16): 165426. doi: 10.1103/PhysRevB.101.165426 |
[33] | Landsberg P T, Tonge G. Thermodynamic energy conversion efficiencies[J]. J Appl Phys, 1980, 51(7): R1−R20. doi: 10.1063/1.328187 |
[34] | Green M A. Time-asymmetric photovoltaics[J]. Nano Lett, 2012, 12(11): 5985−5988. doi: 10.1021/nl3034784 |
[35] | Inampudi S, Cheng J R, Salary M M, et al. Unidirectional thermal radiation from a SiC metasurface[J]. J Opt Soc Am B, 2018, 35(1): 39−46. doi: 10.1364/JOSAB.35.000039 |
[36] | Zhao B, Wang J H, Zhao Z X, et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels[J]. Phys Rev Appl, 2021, 16(6): 064001. doi: 10.1103/PhysRevApplied.16.064001 |
[37] | Yu J B, Qin R, Ying Y B, et al. Asymmetric directional control of thermal emission[J]. Adv Mater, 2023, 35(45): 2302478. doi: 10.1002/adma.202302478 |
[38] | Lucchi E. Applications of the infrared thermography in the energy audit of buildings: a review[J]. Renew Sustain Energy Rev, 2018, 82: 3077−3090. doi: 10.1016/j.rser.2017.10.031 |
[39] | Sakr E, Bermel P. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters[J]. Opt Express, 2017, 25(20): A880−A895. doi: 10.1364/OE.25.00A880 |
[40] | Sakakibara R, Stelmakh V, Chan W R, et al. Practical emitters for thermophotovoltaics: a review[J]. J Photon Energy, 2019, 9(3): 32713. doi: 10.1117/1.JPE.9.032713 |
[41] | Raman A P, Li W, Fan S H. Generating light from darkness[J]. Joule, 2019, 3(11): 2679−2686. doi: 10.1016/j.joule.2019.08.009 |
[42] | Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540−544. doi: 10.1038/nature13883 |
[43] | Yin X B, Yang R G, Tan G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786−791. doi: 10.1126/science.abb0971 |
[44] | Johns B, Chattopadhyay S, Mitra J. Tailoring infrared absorption and thermal emission with ultrathin film interferences in Epsilon-Near-Zero media[J]. Adv Photon Res, 2022, 3(1): 2100153. doi: 10.1002/adpr.202100153 |
[45] | Xu J, Mandal J, Raman A P. Broadband directional control of thermal emission[J]. Science, 2021, 372(6540): 393−397. doi: 10.1126/science.abc5381 |
[46] | Ying Y B, Ma B Z, Yu J B, et al. Whole LWIR directional thermal emission based on ENZ thin films[J]. Laser Photon Rev, 2022, 16(8): 2200018. doi: 10.1002/lpor.202200018 |
[47] | McSherry S, Lenert A. Design of a gradient epsilon-near-zero refractory metamaterial with temperature-insensitive broadband directional emission[J]. Appl Phys Lett, 2022, 121(19): 191702. doi: 10.1063/5.0122535 |
[48] | Hwang J S, Xu J, Raman A P. Simultaneous control of spectral and directional emissivity with gradient Epsilon-Near-Zero InAs photonic structures[J]. Adv Mater, 2023, 35(39): 2302956. doi: 10.1002/adma.202302956 |
[49] | Bae M, Kim D H, Kim S K, et al. Transparent energy-saving windows based on broadband directional thermal emission[J]. Nanophotonics, 2024, 13(5): 749−761. doi: 10.1515/nanoph-2023-0580 |
[50] | Chamoli S K, Li W, Guo C L, et al. Angularly selective thermal emitters for deep subfreezing daytime radiative cooling[J]. Nanophotonics, 2022, 11(16): 3709−3717. doi: 10.1515/nanoph-2022-0032 |
[51] | Ying Y B, Yu J B, Qin B, et al. Directional thermal emission covering two atmospheric windows[J]. Laser Photon Rev, 2023, 17(11): 2300407. doi: 10.1002/lpor.202300407 |
[52] | Sarkar M, Giteau M, Enders M T, et al. Lithography-free directional control of thermal emission[J]. Nanophotonics, 2024, 13(5): 763−771. doi: 10.1515/nanoph-2023-0595 |
[53] | Wang Q Y, Liu T J, Li L N, et al. Ultra-broadband directional thermal emission[J]. Nanophotonics, 2024, 13(5): 793−801. doi: 10.1515/nanoph-2023-0742 |
[54] | Fan Z W, Hwang T, Lin S, et al. Directional thermal emission and display using pixelated non-imaging micro-optics[J]. Nat Commun, 2024, 15(1): 4544. doi: 10.1038/s41467-024-48826-9 |
[55] | Brongersma M L, Cui Y, Fan S H. Light management for photovoltaics using high-index nanostructures[J]. Nat Mater, 2014, 13(5): 451−460. doi: 10.1038/nmat3921 |
[56] | Park Y, Zhao B, Fan S H. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell[J]. Nano Lett, 2022, 22(1): 448−452. doi: 10.1021/acs.nanolett.1c04288 |
[57] | Buddhiraju S, Santhanam P, Fan S H. Thermodynamic limits of energy harvesting from outgoing thermal radiation[J]. Proc Natl Acad Sci USA, 2018, 115(6): E3609−E3615. doi: 10.1073/pnas.1717595115 |
[58] | Li W, Buddhiraju S, Fan S H. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space[J]. Light Sci Appl, 2020, 9: 68. doi: 10.1038/s41377-020-0296-x |
[59] | Zhang Z N, Zhu L X. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer[J]. Phys Rev Appl, 2022, 18(2): 027001. doi: 10.1103/PhysRevApplied.18.027001 |
[60] | Pajovic S, Tsurimaki Y, Qian X, et al. Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I magnetic Weyl semimetal surfaces[J]. Phys Rev B, 2020, 102(16): 165417. doi: 10.1103/PhysRevB.102.165417 |
[61] | Park Y, Asadchy V S, Zhao B, et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures[J]. ACS Photon, 2021, 8(8): 2417−2424. doi: 10.1021/acsphotonics.1c00612 |
[62] | Hadad Y, Soric J C, Alu A. Breaking temporal symmetries for emission and absorption[J]. Proc Natl Acad Sci USA, 2016, 113(13): 3471−3475. doi: 10.1073/pnas.1517363113 |
[63] | Liu M Q, Zhao C Y. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates[J]. Int J Heat Mass Transf, 2022, 186: 122435. doi: 10.1016/j.ijheatmasstransfer.2021.122435 |
[64] | Ghalekohneh S J, Zhao B. Nonreciprocal solar thermophotovoltaics[J]. Phys Rev Appl, 2022, 18(3): 034083. doi: 10.1103/PhysRevApplied.18.034083 |
[65] | Park Y, Omair Z, Fan S H. Nonreciprocal thermophotovoltaic systems[J]. ACS Photon, 2022, 9(12): 3943−3949. doi: 10.1021/acsphotonics.2c01308 |
[66] | Liu M Q, Xia S, Wan W J, et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films[J]. Nat Mater, 2023, 22(10): 1196−1202. doi: 10.1038/s41563-023-01635-9 |
[67] | Zhang Z N, Zhu L X. Broadband nonreciprocal thermal emission[J]. Phys Rev Appl, 2023, 19(1): 014013. doi: 10.1103/PhysRevApplied.19.014013 |
[68] | Shi K Z, Sun Y W, Hu R, et al. Ultra-broadband and wide-angle nonreciprocal thermal emitter based on Weyl semimetal metamaterials[J]. Nanophotonics, 2024, 13(5): 737−747 doi: 10.1515/nanoph-2023-0520 |
Thermal radiation is a fundamental physical process that refers to the spontaneous emission of electromagnetic energy from objects with temperatures above absolute zero due to the thermal motion of particles. Most thermal radiators lack directionality, resulting in energy loss in unnecessary directions, which reduces the efficiency of many thermal devices and applications. In practical applications, thermal radiators are usually required to exhibit different thermal radiation capabilities in different directions, therefore, controlling the directionality of the thermal emission is crucial in efficient heat transfer. The study of directional thermal radiation is of great significance in thermal imaging and sensing, radiative cooling, infrared encryption, and energy utilization. In this context, we classify directional thermal radiation modulation into two categories, broadband and narrowband, and summarize the relevant studies in recent years. The earliest proposed directional modulation was based on grating structures, which realized narrowband modulation. Based on this research, non-reciprocal narrowband directional modulation based on grating structure and narrowband directional modulation based on multilayer film structure were further developed. Due to the theoretical broadband nature of thermal radiation, it is of great significance to realize broadband directional thermal radiation. Broadband directional thermal radiation was first designed through gradient ENZ materials, based on which some researchers have proposed to realize non-reciprocal broadband directional thermal radiation using magnetic gradient ENZ materials. In addition, there are studies on broadband directional thermal radiation based on other materials. Finally, we summarize and analyze the possible future directions and main challenges.
Reciprocal directional thermal radiation design based on micro- and nano-structures. (a) First directional thermal radiation structure based on SiC grating; (b) Emissivity of SiC grating at p-polarization for different wavelengths and angles of incidence [20]; (c) Directional heat radiation devices consisting of equally spaced concentric circular grooves on a W or Mo metal surface [21]; (d) Directional and frequency-selective thermal emission using Au-SiN-Au metasurface [14]; (e) Thermal emission of phonons controlled by magnetic resonance modes based on Ag/SiO2/Al-based metasurface [22]; (f) Control of thermal emission via a metasurface of Al/SiN/Al nanosandwich photoabsorber using modulation of parity-symmetric Fano resonance [23]
Reciprocal directional thermal radiation design based on multilayer membrane structure. (a) Small-angle directional thermal radiation modulation achieved by a MQW layer and a two-dimensional photonic crystal (2D PC) with a lattice constant of 6.5 mm [24]; (b) A directional thermal emitter consisting of a one-dimensional photonic crystal (1D PC) film, a dielectric spacer layer and a continuous metal film [25]; (c) Narrowband radiation directional modulation by separating an Au layer from a 2D material graphene by a dielectric spacer layer [27];(d) Directional thermal radiation modulation by photonic crystals designed with thermal emitters and angle selectors, respectively; (e) Demonstration of the emissivity of a directional narrow-band thermal emitter by the combination of an angle selector with 20 and 70 layers, respectively, and a thermal emitter [26]
Design of non-reciprocal directional thermal radiation based on micro-nanostructures. (a) Schematic of single- and multi-channel non-reciprocal emitters; (b) Schematic of unidirectional nonreciprocal thermal emission from SiC grating; (c) Design optimization of SiC grating in the SPhP region with respect to wavelength and emission angle and emissivity [35]; (d) Schematic of a nonreciprocal multiport emitter and the corresponding angular distributions of emissivity and absorptivity [36]; (e) Schematic of a variable gate structure prepared from Au/Ge/ZnS/Au to realize an asymmetric directional thermal emission structure [37]
Realization of broadband directional thermal radiation modulation based on ENZ material. (a) ENZ material consisting of doped CdO and SiO2 with Au substrate realizes narrowband directional thermal radiation modulation [44]; (b) Broadband directional thermal radiation modulation was achieved in the 7-12 μm and 10-14 μm wavelengths by separately designed gradient ENZ materials [45]; (c) A dielectric gap (Ge) is used to connect and combine two gradient ENZ materials with different wavelengths to realize broadband directional thermal emission modulation covering the full long-wave infrared (LWIR) range [46]; (d) Gradient ENZ metamaterials made of high-temperature-resistant oxides MgO, BZHO, and NiO, demonstrating the temperature insensitivity of broadband directional thermal emission modulation [47]; (e) Comparative emissivity plots of this gradient ENZ metamaterials at different temperatures (25 ℃ and 1000 ℃) [47]
Realization of broadband directional thermal radiation modulation based on ENZ materials. (a) Gradient ENZ was characterized by growing InAs with different doping concentrations to achieve dynamic modulation of directional broadband thermal radiation [48]; (b) Transparent directional broadband thermal radiation structure based on Al2O3/Si3N4/ITO material designed for vertical surface radiative cooling [49]
(a) Directional broadband thermal radiation modulation by designing photonic crystals as thermal emitter and angle selector, respectively [26]; (b) Structure consisting of a Si3N4 thermal emitter and a top transmission filter composed of BaF2 and LiF for directional broadband thermal radiation [50]; (c) Schematic of an ultra-broadband directional thermal radiation structure matched to an atmospheric window, with the system consisting of a thin dielectric film on a radiating substrate; (d) Structure consisting of a flexible PEI substrate and a Ge film layer for direction-specific broadband thermal radiation modulation [51]; (e) Structure consisting of alternating three-phase metamaterials, including an array of ellipsoidal core-shell structures and a cylindrical array of PMMA covered with an ITO conformal coating, for realizing ultra-broadband directional thermal radiation [52]; (f) Thermal radiation modulation for high directivity and broadband characteristics based on a PDME structure consisting of SU-8 photoresist substrate, polymer structure, and silver reflective layer [53]
Directed broadband non-reciprocal thermal radiation modulation. (a) Gradient magnetized ENZ multilayers composed of InAs films with different doping concentrations are utilized for non-reciprocal thermal radiation modulation [66]; (b) Variation of emissivity and absorptivity of nonreciprocal emitters of single-layer magneto-optical materials in the presence of different external magnetic fields; (c) A structure consisting of a magnetic Wely metal (MWS) layer with a chemical potential gradient above Au enables directional broadband non-reciprocal thermal emission in the absence of an external magnetic field [67]; (d) A structure consisting of two WSM layers with different Fermi energy levels and a dielectric film placed alternately on the Au reflector, which enables directional broadband nonreciprocal thermal emission in the absence of an external magnetic field [68]