Chen Z Y, Liu H T, Wu X H, et al. Progress in the research of directed thermal radiation[J]. Opto-Electron Eng, 2024, 51(9): 240128. doi: 10.12086/oee.2024.240128
Citation: Chen Z Y, Liu H T, Wu X H, et al. Progress in the research of directed thermal radiation[J]. Opto-Electron Eng, 2024, 51(9): 240128. doi: 10.12086/oee.2024.240128

Progress in the research of directed thermal radiation

    Fund Project: Project supported by National Natural Science Foundation of China (52106099), Natural Science Foundation of Shandong Province (ZR2022YQ57), and the Taishan Scholars Program
More Information
  • Thermal radiation is a fundamental physical process that refers to the spontaneous emission of electromagnetic energy from objects with temperatures above absolute zero due to the thermal motion of particles. Most thermal radiators lack directionality, resulting in energy loss in unnecessary directions, which reduces the efficiency of many thermal devices and applications. In practical applications, thermal radiators are usually required to exhibit different thermal radiation capabilities in different directions, therefore, controlling the directionality of the thermal emission is crucial in efficient heat transfer. The study of directional thermal radiation is of great significance in thermal imaging and sensing, radiative cooling, infrared encryption, and energy utilization. The review first describes the difference between traditional and directional thermal radiation, as well as the potential value of the latter at the frontiers of science. Subsequently, based on the characteristics of thermal radiation, it systematically organizes the research progress of domestic and foreign scholars in directional thermal radiation in terms of both narrowband directional thermal radiation and broadband directional thermal radiation. Finally, future research trends in this field are envisioned, and major challenges are analyzed, aiming to provide theoretical guidance and practical insights for the further development of directional thermal radiation technology.
  • 加载中
  • [1] Inoue T, de Zoysa M, Asano T, et al. Realization of dynamic thermal emission control[J]. Nat Mater, 2014, 13(10): 928−931. doi: 10.1038/nmat4043

    CrossRef Google Scholar

    [2] Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Adv Mater, 2017, 29(39): 1701275. doi: 10.1002/adma.201701275

    CrossRef Google Scholar

    [3] Beenakker C W J. Thermal radiation and amplified spontaneous emission from a random medium[J]. Phys Rev Lett, 1998, 81(9): 1829−1832. doi: 10.1103/PhysRevLett.81.1829

    CrossRef Google Scholar

    [4] Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Appl Phys Lett, 2011, 98(24): 241105. doi: 10.1063/1.3600779

    CrossRef Google Scholar

    [5] Jung D, Bank S, Lee M L, et al. Next-generation mid-infrared sources[J]. J Opt, 2017, 19(12): 123001. doi: 10.1088/2040-8986/aa939b

    CrossRef Google Scholar

    [6] Palchetti L, Di Natale G, Bianchini G. Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission[J]. J Geophys Res Atmos, 2016, 121(18): 10804−10819. doi: 10.1002/2016JD025162

    CrossRef Google Scholar

    [7] Fu Z, Zhong D, et al. Scalable asymmetric fabric evaporator for solar desalination and thermoelectricity generation[J]. Adv Sci, 2024, 20: e2406474. doi: 10.1002/advs.202406474

    CrossRef Google Scholar

    [8] Zhang R, Song Z, et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding[J]. Light Sci Appl, 2024, 13: 223. doi: 10.1038/s41377-024-01541-y

    CrossRef Google Scholar

    [9] Xu G, Kang Q, et al. Inverse-design laser-infrared compatible stealth with thermal management enabled by wavelength-selective thermal emitter[J]. Appl Therm Eng, 2024, 255: 124063. doi: 10.1016/j.applthermaleng.2024.124063

    CrossRef Google Scholar

    [10] Xu Z Q, Luo H, Zhu H Z, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Lett, 2021, 21(12): 5269−5276. doi: 10.1021/acs.nanolett.1c01396

    CrossRef Google Scholar

    [11] Pralle M U, Moelders N, McNeal M P, et al. Photonic crystal enhanced narrow-band infrared emitters[J]. Appl Phys Lett, 2002, 81(25): 4685−4687. doi: 10.1063/1.1526919

    CrossRef Google Scholar

    [12] Liu X L, Tyler T, Starr T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Phys Rev Lett, 2011, 107(4): 045901. doi: 10.1103/PhysRevLett.107.045901

    CrossRef Google Scholar

    [13] Morsy A M, Barako M T, Jankovic V, et al. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films[J]. Sci Rep, 2020, 10(1): 13964. doi: 10.1038/s41598-020-70931-0

    CrossRef Google Scholar

    [14] Costantini D, Lefebvre A, Coutrot A L, et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Phys Rev Appl, 2015, 4(1): 014023. doi: 10.1103/PhysRevApplied.4.014023

    CrossRef Google Scholar

    [15] Shchegrov A V, Joulain K, Carminati R, et al. Near-field spectral effects due to electromagnetic surface excitations[J]. Phys Rev Lett, 2000, 85(7): 1548−1551. doi: 10.1103/PhysRevLett.85.1548

    CrossRef Google Scholar

    [16] Carminati R, Greffet J J. Near-field effects in spatial coherence of thermal sources[J]. Phys Rev Lett, 1999, 82(8): 1660−1663. doi: 10.1103/PhysRevLett.82.1660

    CrossRef Google Scholar

    [17] Wolf E. Non-cosmological redshifts of spectral lines[J]. Nature, 1987, 326(6111): 363−365. doi: 10.1038/326363a0

    CrossRef Google Scholar

    [18] Wolf E, James D F V. Correlation-induced spectral changes[J]. Rep Prog Phys, 1996, 59(6): 771−818. doi: 10.1088/0034-4885/59/6/002

    CrossRef Google Scholar

    [19] Le Gall J, Olivier M, Greffet J J. Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton[J]. Phys Rev B, 1997, 55(15): 10105−10114. doi: 10.1103/PhysRevB.55.10105

    CrossRef Google Scholar

    [20] Greffet J J, Carminati R, Joulain K, et al. Coherent emission of light by thermal sources[J]. Nature, 2002, 416(6876): 61−64. doi: 10.1038/416061a

    CrossRef Google Scholar

    [21] Park J H, Han S E, Nagpal P, et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes[J]. ACS Photon, 2016, 3(3): 494−500. doi: 10.1021/acsphotonics.6b00022

    CrossRef Google Scholar

    [22] Zhang X, Liu H, Zhang Z G, et al. Controlling thermal emission of phonon by magnetic metasurfaces[J]. Sci Rep, 2017, 7: 41858. doi: 10.1038/srep41858

    CrossRef Google Scholar

    [23] Zhang X, Zhang Z G, Wang Q, et al. Controlling thermal emission by parity-symmetric fano resonance of optical absorbers in metasurfaces[J]. ACS Photon, 2019, 6(11): 2671−2676. doi: 10.1021/acsphotonics.9b00024

    CrossRef Google Scholar

    [24] De Zoysa M, Asano T, Mochizuki K, et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nat Photon, 2012, 6(8): 535−539. doi: 10.1038/nphoton.2012.146

    CrossRef Google Scholar

    [25] Liu X X, Li Z W, Wen Z J, et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 2019, 11(42): 19742−19750. doi: 10.1039/C9NR06181A

    CrossRef Google Scholar

    [26] Qu Y R, Pan M Y, Qiu M. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources[J]. Phys Rev Appl, 2020, 13(6): 064052. doi: 10.1103/PhysRevApplied.13.064052

    CrossRef Google Scholar

    [27] Zhu L X, Liu F Y, Lin H T, et al. Angle-selective perfect absorption with two-dimensional materials[J]. Light Sci Appl, 2016, 5(3): e16052. doi: 10.1038/lsa.2016.52

    CrossRef Google Scholar

    [28] Miller D A B, Zhu L X, Fan S H. Universal modal radiation laws for all thermal emitters[J]. Proc Natl Acad Sci USA, 2017, 114(17): 4336−4341. doi: 10.1073/pnas.1701606114

    CrossRef Google Scholar

    [29] Zhu L X, Fan S H. Near-complete violation of detailed balance in thermal radiation[J]. Phys Rev B, 2014, 90(22): 220301(R). doi: 10.1103/PhysRevB.90.220301

    CrossRef Google Scholar

    [30] Zhao B, Shi Y, Wang J H, et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field[J]. Opt Lett, 2019, 44(17): 4203−4206. doi: 10.1364/OL.44.004203

    CrossRef Google Scholar

    [31] Zhao B, Guo C, Garcia C A C, et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals[J]. Nano Lett, 2020, 20(3): 1923−1927. doi: 10.1021/acs.nanolett.9b05179

    CrossRef Google Scholar

    [32] Tsurimaki Y, Qian X, Pajovic S, et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking[J]. Phys Rev B, 2020, 101(16): 165426. doi: 10.1103/PhysRevB.101.165426

    CrossRef Google Scholar

    [33] Landsberg P T, Tonge G. Thermodynamic energy conversion efficiencies[J]. J Appl Phys, 1980, 51(7): R1−R20. doi: 10.1063/1.328187

    CrossRef Google Scholar

    [34] Green M A. Time-asymmetric photovoltaics[J]. Nano Lett, 2012, 12(11): 5985−5988. doi: 10.1021/nl3034784

    CrossRef Google Scholar

    [35] Inampudi S, Cheng J R, Salary M M, et al. Unidirectional thermal radiation from a SiC metasurface[J]. J Opt Soc Am B, 2018, 35(1): 39−46. doi: 10.1364/JOSAB.35.000039

    CrossRef Google Scholar

    [36] Zhao B, Wang J H, Zhao Z X, et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels[J]. Phys Rev Appl, 2021, 16(6): 064001. doi: 10.1103/PhysRevApplied.16.064001

    CrossRef Google Scholar

    [37] Yu J B, Qin R, Ying Y B, et al. Asymmetric directional control of thermal emission[J]. Adv Mater, 2023, 35(45): 2302478. doi: 10.1002/adma.202302478

    CrossRef Google Scholar

    [38] Lucchi E. Applications of the infrared thermography in the energy audit of buildings: a review[J]. Renew Sustain Energy Rev, 2018, 82: 3077−3090. doi: 10.1016/j.rser.2017.10.031

    CrossRef Google Scholar

    [39] Sakr E, Bermel P. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters[J]. Opt Express, 2017, 25(20): A880−A895. doi: 10.1364/OE.25.00A880

    CrossRef Google Scholar

    [40] Sakakibara R, Stelmakh V, Chan W R, et al. Practical emitters for thermophotovoltaics: a review[J]. J Photon Energy, 2019, 9(3): 32713. doi: 10.1117/1.JPE.9.032713

    CrossRef Google Scholar

    [41] Raman A P, Li W, Fan S H. Generating light from darkness[J]. Joule, 2019, 3(11): 2679−2686. doi: 10.1016/j.joule.2019.08.009

    CrossRef Google Scholar

    [42] Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540−544. doi: 10.1038/nature13883

    CrossRef Google Scholar

    [43] Yin X B, Yang R G, Tan G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786−791. doi: 10.1126/science.abb0971

    CrossRef Google Scholar

    [44] Johns B, Chattopadhyay S, Mitra J. Tailoring infrared absorption and thermal emission with ultrathin film interferences in Epsilon-Near-Zero media[J]. Adv Photon Res, 2022, 3(1): 2100153. doi: 10.1002/adpr.202100153

    CrossRef Google Scholar

    [45] Xu J, Mandal J, Raman A P. Broadband directional control of thermal emission[J]. Science, 2021, 372(6540): 393−397. doi: 10.1126/science.abc5381

    CrossRef Google Scholar

    [46] Ying Y B, Ma B Z, Yu J B, et al. Whole LWIR directional thermal emission based on ENZ thin films[J]. Laser Photon Rev, 2022, 16(8): 2200018. doi: 10.1002/lpor.202200018

    CrossRef Google Scholar

    [47] McSherry S, Lenert A. Design of a gradient epsilon-near-zero refractory metamaterial with temperature-insensitive broadband directional emission[J]. Appl Phys Lett, 2022, 121(19): 191702. doi: 10.1063/5.0122535

    CrossRef Google Scholar

    [48] Hwang J S, Xu J, Raman A P. Simultaneous control of spectral and directional emissivity with gradient Epsilon-Near-Zero InAs photonic structures[J]. Adv Mater, 2023, 35(39): 2302956. doi: 10.1002/adma.202302956

    CrossRef Google Scholar

    [49] Bae M, Kim D H, Kim S K, et al. Transparent energy-saving windows based on broadband directional thermal emission[J]. Nanophotonics, 2024, 13(5): 749−761. doi: 10.1515/nanoph-2023-0580

    CrossRef Google Scholar

    [50] Chamoli S K, Li W, Guo C L, et al. Angularly selective thermal emitters for deep subfreezing daytime radiative cooling[J]. Nanophotonics, 2022, 11(16): 3709−3717. doi: 10.1515/nanoph-2022-0032

    CrossRef Google Scholar

    [51] Ying Y B, Yu J B, Qin B, et al. Directional thermal emission covering two atmospheric windows[J]. Laser Photon Rev, 2023, 17(11): 2300407. doi: 10.1002/lpor.202300407

    CrossRef Google Scholar

    [52] Sarkar M, Giteau M, Enders M T, et al. Lithography-free directional control of thermal emission[J]. Nanophotonics, 2024, 13(5): 763−771. doi: 10.1515/nanoph-2023-0595

    CrossRef Google Scholar

    [53] Wang Q Y, Liu T J, Li L N, et al. Ultra-broadband directional thermal emission[J]. Nanophotonics, 2024, 13(5): 793−801. doi: 10.1515/nanoph-2023-0742

    CrossRef Google Scholar

    [54] Fan Z W, Hwang T, Lin S, et al. Directional thermal emission and display using pixelated non-imaging micro-optics[J]. Nat Commun, 2024, 15(1): 4544. doi: 10.1038/s41467-024-48826-9

    CrossRef Google Scholar

    [55] Brongersma M L, Cui Y, Fan S H. Light management for photovoltaics using high-index nanostructures[J]. Nat Mater, 2014, 13(5): 451−460. doi: 10.1038/nmat3921

    CrossRef Google Scholar

    [56] Park Y, Zhao B, Fan S H. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell[J]. Nano Lett, 2022, 22(1): 448−452. doi: 10.1021/acs.nanolett.1c04288

    CrossRef Google Scholar

    [57] Buddhiraju S, Santhanam P, Fan S H. Thermodynamic limits of energy harvesting from outgoing thermal radiation[J]. Proc Natl Acad Sci USA, 2018, 115(6): E3609−E3615. doi: 10.1073/pnas.1717595115

    CrossRef Google Scholar

    [58] Li W, Buddhiraju S, Fan S H. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space[J]. Light Sci Appl, 2020, 9: 68. doi: 10.1038/s41377-020-0296-x

    CrossRef Google Scholar

    [59] Zhang Z N, Zhu L X. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer[J]. Phys Rev Appl, 2022, 18(2): 027001. doi: 10.1103/PhysRevApplied.18.027001

    CrossRef Google Scholar

    [60] Pajovic S, Tsurimaki Y, Qian X, et al. Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I magnetic Weyl semimetal surfaces[J]. Phys Rev B, 2020, 102(16): 165417. doi: 10.1103/PhysRevB.102.165417

    CrossRef Google Scholar

    [61] Park Y, Asadchy V S, Zhao B, et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures[J]. ACS Photon, 2021, 8(8): 2417−2424. doi: 10.1021/acsphotonics.1c00612

    CrossRef Google Scholar

    [62] Hadad Y, Soric J C, Alu A. Breaking temporal symmetries for emission and absorption[J]. Proc Natl Acad Sci USA, 2016, 113(13): 3471−3475. doi: 10.1073/pnas.1517363113

    CrossRef Google Scholar

    [63] Liu M Q, Zhao C Y. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates[J]. Int J Heat Mass Transf, 2022, 186: 122435. doi: 10.1016/j.ijheatmasstransfer.2021.122435

    CrossRef Google Scholar

    [64] Ghalekohneh S J, Zhao B. Nonreciprocal solar thermophotovoltaics[J]. Phys Rev Appl, 2022, 18(3): 034083. doi: 10.1103/PhysRevApplied.18.034083

    CrossRef Google Scholar

    [65] Park Y, Omair Z, Fan S H. Nonreciprocal thermophotovoltaic systems[J]. ACS Photon, 2022, 9(12): 3943−3949. doi: 10.1021/acsphotonics.2c01308

    CrossRef Google Scholar

    [66] Liu M Q, Xia S, Wan W J, et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films[J]. Nat Mater, 2023, 22(10): 1196−1202. doi: 10.1038/s41563-023-01635-9

    CrossRef Google Scholar

    [67] Zhang Z N, Zhu L X. Broadband nonreciprocal thermal emission[J]. Phys Rev Appl, 2023, 19(1): 014013. doi: 10.1103/PhysRevApplied.19.014013

    CrossRef Google Scholar

    [68] Shi K Z, Sun Y W, Hu R, et al. Ultra-broadband and wide-angle nonreciprocal thermal emitter based on Weyl semimetal metamaterials[J]. Nanophotonics, 2024, 13(5): 737−747 doi: 10.1515/nanoph-2023-0520

    CrossRef Google Scholar

  • Thermal radiation is a fundamental physical process that refers to the spontaneous emission of electromagnetic energy from objects with temperatures above absolute zero due to the thermal motion of particles. Most thermal radiators lack directionality, resulting in energy loss in unnecessary directions, which reduces the efficiency of many thermal devices and applications. In practical applications, thermal radiators are usually required to exhibit different thermal radiation capabilities in different directions, therefore, controlling the directionality of the thermal emission is crucial in efficient heat transfer. The study of directional thermal radiation is of great significance in thermal imaging and sensing, radiative cooling, infrared encryption, and energy utilization. In this context, we classify directional thermal radiation modulation into two categories, broadband and narrowband, and summarize the relevant studies in recent years. The earliest proposed directional modulation was based on grating structures, which realized narrowband modulation. Based on this research, non-reciprocal narrowband directional modulation based on grating structure and narrowband directional modulation based on multilayer film structure were further developed. Due to the theoretical broadband nature of thermal radiation, it is of great significance to realize broadband directional thermal radiation. Broadband directional thermal radiation was first designed through gradient ENZ materials, based on which some researchers have proposed to realize non-reciprocal broadband directional thermal radiation using magnetic gradient ENZ materials. In addition, there are studies on broadband directional thermal radiation based on other materials. Finally, we summarize and analyze the possible future directions and main challenges.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint