Citation: | Zhang P, Ren H Y, Tian J Q, et al. Image-based aerial fire detector based on cross-scale fusion[J]. Opto-Electron Eng, 2025, 52(1): 240253. doi: 10.12086/oee.2025.240253 |
[1] | 胡君健, 谢启源, 戎军, 等. 感烟火灾探测器的抗干扰实验及其分析[J]. 火灾科学, 2005, 14(2): 111−116. doi: 10.3969/j.issn.1004-5309.2005.02.009 Hu J J, Xie Q Y, Rong J, et al. Experimental analysis on nuisance immunity of smoke detectors[J]. Fire Saf Sci, 2005, 14(2): 111−116. doi: 10.3969/j.issn.1004-5309.2005.02.009 |
[2] | Zhang R, Zhang W, Liu Y Y, et al. An efficient deep neural network with color-weighted loss for fire detection[J]. Multimed Tools Appl, 2022, 81(27): 39695−39713. doi: 10.1007/s11042-022-12861-9 |
[3] | 高锴. 浅谈图像感烟探测产品在飞机货仓火灾探测中的应用[J]. 品牌与标准化, 2016, (7): 75−78. doi: 10.3969/j.issn.1674-4977.2016.07.006 Gao K. Application of image smoke detection products in aircraft cargo compartment fire detection[J]. Brand Stand, 2016, (7): 75−78. doi: 10.3969/j.issn.1674-4977.2016.07.006 |
[4] | Blake D. Aircraft cargo compartment smoke detector alarm incidents on U. S. -registered aircraft, 1974–1999[R]. Atlantic City: Federal Aviation Administration, 2000. |
[5] | 何志祥, 王立纲, 孟超, 等. 基于多数据融合的复合火灾探测系统设计[J]. 消防科学与技术, 2019, 38(7): 977−980. doi: 10.3969/j.issn.1009-0029.2019.07.022 He Z X, Wang L G, Meng C, et al. Design of composite fire detection system based on multi-data fusion[J]. Fire Sci Technol, 2019, 38(7): 977−980. doi: 10.3969/j.issn.1009-0029.2019.07.022 |
[6] | 张红梅, 叶慧, 郑罡, 等. 多传感器飞机货舱火警探测系统研究[J]. 重庆理工大学学报(自然科学), 2017, 31(7): 176−181. doi: 10.3969/j.issn.1674-8425(z).2017.07.028 Zhang H M, Ye H, Zheng G, et al. Research on the multi sensor fire detection system in aircraft cargo[J]. J Chongqing Univ Technol (Nat Sci), 2017, 31(7): 176−181. doi: 10.3969/j.issn.1674-8425(z).2017.07.028 |
[7] | 何永勃, 张文杰, 杨伟, 等. 飞机货舱复合烟雾探测方法研究[J]. 中国安全科学学报, 2019, 29(1): 43−48. doi: 10.16265/j.cnki.issn1003-3033.2019.01.008 He Y B, Zhang W J, Yang W, et al. Research on multi-sensor smoke detection method for aircraft cargo compartment[J]. China Saf Sci J, 2019, 29(1): 43−48. doi: 10.16265/j.cnki.issn1003-3033.2019.01.008 |
[8] | 王哲. 飞机货舱防火设计要求研究[J]. 航空标准化与质量, 2014, (5): 13−15, 34. doi: 10.13237/j.cnki.asq.2014.05.004 Wang Z. Research on fire protection design requirements for aircraft cargo compartments[J]. Aeronaut Stand Qual, 2014, (5): 13−15, 34. doi: 10.13237/j.cnki.asq.2014.05.004 |
[9] | 张小雪, 王雨, 吴思远, 等. 基于级联稀疏查询机制的轻量化火灾检测算法[J]. 光电工程, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216 Zhang X X, Wang Y, Wu S Y, et al. An improved lightweight fire detection algorithm based on cascade sparse query[J]. Opto-Electron Eng, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216 |
[10] | Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165. |
[11] | Zhang Y F, Ren W Q, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146−157. doi: 10.1016/j.neucom.2022.07.042 |
[12] | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, 2017: 2999–3007. https://doi.org/10.1109/ICCV.2017.324. |
[13] | Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 13708–13717. https://doi.org/10.1109/CVPR46437.2021.01350. |
[14] | Li H L, Li J, Wei H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[Z]. arXiv: 2206.02424, 2024. https://arxiv.org/abs/2206.02424v1. |
[15] | Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection[Z]. arXiv: 1911.09516, 2019. https://doi.org/10.48550/arXiv.1911.09516. |
[16] | Li C Y, Li L L, Jiang H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[Z]. arXiv: 2209.02976, 2022. https://doi.org/10.48550/arXiv.2209.02976. |
[17] | Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 2023: 7464–7475. https://doi.org/10.1109/CVPR52729.2023.00721. |
[18] | Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, 2016: 21–37. https://doi.org/10.1007/978-3-319-46448-0_2. |
[19] | Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079. |
[20] | Wang C Y, Ye I H, Liao H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the 18th European Conference on Computer Vision, Milan, 2024: 1–21. https://doi.org/10.1007/978-3-031-72751-1_1. |
[21] | Wang A, Chen H, Liu L H, et al. YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://doi.org/10.48550/arXiv.2405.14458. |
[22] | Zhao Y, Lv W Y, Xu S L, et al. DETrs beat YOLOs on real-time object detection[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2024: 16965–16974. https://doi.org/10.1109/CVPR52733.2024.01605. |
[23] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 特种火灾探测器: GB 15631–2008[S]. 北京: 中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People's Republic of China. Special type fire detectors: GB 15631–2008[S]. Beijing: Standards Press of China, 2009. |
[24] | 闵芳. 盘点世界各国大型运输机[J]. 生命与灾害, 2013, 3: 34−37. https://cqvip.com/doc/journal/972803679 Min F. Overview of large transport aircraft in various countries[J]. Life Disaster, 2013, 3: 34−37. https://cqvip.com/doc/journal/972803679 |
To address the challenges of traditional smoke detectors in identifying replaced smoke in the cargo hold of high-altitude, low-pressure aircraft, an innovative image-based fire-and-smoke detection system was developed using the domestic RK3588 embedded AI chip. This system employs an enhanced YOLOv5s detection algorithm tailored specifically for fire-and-smoke detection, incorporating several critical improvements to achieve high precision and operational efficiency. The backbone network of YOLOv5s is replaced with the lightweight GhostNet architecture, which significantly reduces computational requirements and the model’s parameter size, making it highly suitable for deployment on embedded devices with limited resources. To enhance feature extraction, a collaborative attention module is integrated between the backbone and the feature aggregation network, ensuring that critical features are captured effectively for better detection outcomes. In addition, the C3 structure in the feature fusion network is substituted with the VoV-GSCSP module. This modification not only enhances the integration of multi-scale features but also reduces computational complexity, enabling the system to handle high-resolution images more efficiently. To further optimize the system’s performance, the Slim-ASFF module is inserted between the feature fusion network and the detection head. This addition improves the combination of feature maps across varying scales, ensuring accurate detection of both small and large fire-and-smoke instances. The regression loss function is also updated by replacing the standard loss function with Focal EIOU. This improvement addresses challenges related to aspect ratio variations in the original loss function, enhancing the system’s ability to identify positive samples while reducing false alarms effectively. Experimental results on a self-constructed fire-and-smoke dataset demonstrate the system achieves a 2.0% increase in mean Average Precision at a 0.5 threshold (mAP50) and a 2.2% improvement at 0.5:0.95 thresholds (mAP50:95). These results demonstrate the algorithm’s effectiveness under challenging conditions, such as low light and high turbulence environments, making it highly reliable for real-world applications. The hardware of this system is centered around the RK3588 embedded processing board, which interfaces with a CMOS image sensor for real-time data acquisition. The processing board includes an RTSP streaming server, enabling the host computer to access the visual interface via the onboard LAN and an assigned IP address. Testing in a simulated cabin of 15 m × 8 m × 4 m demonstrated reliable performance, with flame alarms triggered within 10 seconds and smoke alarms within 20 seconds. All functional indicators met rigorous design specifications, confirming the system as a scalable, efficient, and reliable solution for fire-and-smoke detection in aircraft cargo holds. By combining advanced deep learning techniques, lightweight architectures, and optimized hardware, this system ensures compliance with the stringent demands of real-time monitoring in airborne environments.
Detector system workflow
Overall structure of the image-based aviation fire detector hardware
Model conversion process
Network topology
Visual interface. (a) Multi-sensor parallel display; (b) Flame bomb diagram alarm and text prompt; (c) Smoke grenade map alarm and text prompt
Overall structure of the YOLOv5s network
Ghost module
Co-attention module
GSConv module
Structure of the GS bottleneck module and VoV-GSCSP module. (a) GS bottleneck module structure; (b) VoV-GSCSP module structure
Diagram of ASFF structure
Schematic diagram of the test environment. (a) Large-scale high-altitude environment simulation device; (b) In-cabin test environment