Yang W, Sha L, Fan D Q, et al. Optimization of hand-eye calibration for blade repair robot based on anomalous sample detection[J]. Opto-Electron Eng, 2025, 52(3): 240257. doi: 10.12086/oee.2025.240257
Citation: Yang W, Sha L, Fan D Q, et al. Optimization of hand-eye calibration for blade repair robot based on anomalous sample detection[J]. Opto-Electron Eng, 2025, 52(3): 240257. doi: 10.12086/oee.2025.240257

Optimization of hand-eye calibration for blade repair robot based on anomalous sample detection

    Fund Project: Shanghai Collaborative Innovation Center for Large-Component Intelligent Manufacturing Robot Technology (ZXP20211101), Development and Engineering Demonstration of Key Components of Intelligent Robot for Repairing Surface Defects of Fan Blades for Work at Altitude (0231-E4-6000-23-0025)(23)JQ-017
More Information
  • To reduce the impact of random errors on hand-eye calibration in the visual system of a blade repair robot, an optimization method based on outlier detection is proposed. Firstly, a linear equation for the hand-eye matrix is established. The initial hand-eye matrix is solved using singular value decomposition (SVD). Secondly, the initial value is used to perform an inversion operation on the samples. Outlier samples are detected and removed based on Z-scores, leading to a more accurate hand-eye matrix. Finally, the obtained hand-eye matrix is used as the initial value for optimization. The rotation is represented by unit quaternions, and the Levenberg-Marquardt algorithm is applied to further optimize the initial value, yielding the final hand-eye matrix. Hand-eye calibration experiments were conducted on the blade repair robot equipped with a stereo depth camera. The real coordinates of the target points were obtained using a TCP calibration tool. The predicted coordinates from the hand-eye matrix, obtained by the proposed method, have an average Euclidean distance of 0.858 mm from the true coordinates, with a variance stabilizing below 0.1. Compared to other methods, the proposed approach effectively reduces the impact of random errors and demonstrates good stability and accuracy.
  • 加载中
  • [1] Cheng X H, Han Q G, Huang Y Z, et al. Bioinspired ultra-fine hybrid nanocoating for improving strength and damage tolerance of composite fan blades in flexible manufacturing[J]. Compos Sci Technol, 2025, 259: 110956. doi: 10.1016/j.compscitech.2024.110956

    CrossRef Google Scholar

    [2] Feng X Z, Tian D Z, Wu H. A matrix-solving hand-eye calibration method considering robot kinematic errors[J]. J Manuf Process, 2023, 99: 618−635. doi: 10.1016/j.jmapro.2023.05.073

    CrossRef Google Scholar

    [3] 邱垚. 基于3D目标识别的工业机器人无序分拣技术研究[D]. 西安: 西安理工大学, 2019.

    Google Scholar

    Qiu Y. Research on disordered sorting technology of industrial robot based on 3D target recognition[D]. Xi’an: Xi’an University of Technology, 2019.

    Google Scholar

    [4] 孙阳, 翟雨农, 杨应科, 等. 视觉引导的大部件对接移载式定位器入位方法[J]. 北京航空航天大学学报, 2024, 1−18 doi: 10.13700/j.bh.1001-5965.2023.0591

    CrossRef Google Scholar

    Sun Y, Zhai Y N, Yang Y K, et al. Vision-based mobile positioner insertion method for pose alignment of large components[J]. J Beijing Univ Aeronaut Astronaut, 2024, 1−18 doi: 10.13700/j.bh.1001-5965.2023.0591

    CrossRef Google Scholar

    [5] 李光, 章晓峰, 杨加超, 等. 基于残差BP神经网络的6自由度机器人视觉标定[J]. 农业机械学报, 2021, 52(4): 366−374. doi: 10.6041/j.issn.1000-1298.2021.04.040

    CrossRef Google Scholar

    Li G, Zhang X F, Yang J C, et al. Vision calibration of six degree of freedom robot based on residual BP neural network[J]. Trans Chin Soc Agric Mach, 2021, 52(4): 366−374. doi: 10.6041/j.issn.1000-1298.2021.04.040

    CrossRef Google Scholar

    [6] Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Trans Rob Autom, 1989, 5(3): 345−358. doi: 10.1109/70.34770

    CrossRef Google Scholar

    [7] 田鹏飞, 杨树明, 吴孜越, 等. 结合精度补偿的机器人优化手眼标定方法[J]. 西安交通大学学报, 2020, 54(8): 99−106. doi: 10.7652/xjtuxb202008013

    CrossRef Google Scholar

    Tian P F, Yang S M, Wu Z Y, et al. An optimal hand-eye calibration method for robots based on precision compensation[J]. J Xi'an Jiaotong Univ, 2020, 54(8): 99−106. doi: 10.7652/xjtuxb202008013

    CrossRef Google Scholar

    [8] 赵云涛, 谢万琪, 李维刚, 等. 基于协方差矩阵自适应进化策略的机器人手眼标定算法[J]. 计算机应用, 2023, 43(10): 3225−3229. doi: 10.11772/j.issn.1001-9081.2022081282

    CrossRef Google Scholar

    Zhao Y T, Xie W Q, Li W G, et al. Robot hand-eye calibration algorithm based on covariance matrix adaptation evolutionary strategy[J]. J Comput Appl, 2023, 43(10): 3225−3229. doi: 10.11772/j.issn.1001-9081.2022081282

    CrossRef Google Scholar

    [9] 毛成林, 于瑞强, 宋爱国. 一种结合TCP标定的深度相机手眼标定方法[J]. 仪器仪表学报, 2023, 44(3): 280−286. doi: 10.19650/j.cnki.cjsi.J2210826

    CrossRef Google Scholar

    Mao C L, Yu R Q, Song A G. A hand-eye calibration method of depth camera combined with TCP calibration[J]. Chin J Sci Instrum, 2023, 44(3): 280−286. doi: 10.19650/j.cnki.cjsi.J2210826

    CrossRef Google Scholar

    [10] Shah M. Solving the robot-world/hand-eye calibration problem using the Kronecker product[J]. J Mechanisms Robotics 2013, 5 (3): 031007. https://doi.org/10.1115/1.4024473.

    Google Scholar

    [11] 郑震宇, 高健, 郑卓鋆, 等. 基于3D视觉点云配准的高精度手眼标定方法[J]. 机械设计, 2023, 40(S2): 51−56. doi: 10.13841/j.cnki.jxsj.2023.s2.018

    CrossRef Google Scholar

    Zheng Z Y, Gao J, Zheng Z J, et al. High precision hand-eye calibration method based on 3D visual point cloud registration[J]. J Mach Des, 2023, 40(S2): 51−56. doi: 10.13841/j.cnki.jxsj.2023.s2.018

    CrossRef Google Scholar

    [12] Daniilidis K. Hand-eye calibration using dual quaternions[J]. Int J Rob Res, 1999, 18(3): 286−298. doi: 10.1177/02783649922066213

    CrossRef Google Scholar

    [13] Horaud R, Dornaika F. Hand-eye calibration[J]. Int J Rob Res, 1995, 14(3): 195−210. doi: 10.1177/027836499501400301

    CrossRef Google Scholar

    [14] 付中涛, 饶书航, 潘嘉滨, 等. 基于LMI-SDP优化的机器人手眼关系精确求解[J]. 机械工程学报, 2023, 59(17): 109−115. doi: 10.3901/JME.2023.17.109

    CrossRef Google Scholar

    Fu Z T, Rao S H, Pan J B, et al. Towards accurate solution of robot hand-eye relationship based on the LMI-SDP optimization[J]. J Mech Eng, 2023, 59(17): 109−115. doi: 10.3901/JME.2023.17.109

    CrossRef Google Scholar

    [15] Chen L, Zhong G W, Wan Z H, et al. A novel binocular vision-robot hand-eye calibration method using dual nonlinear optimization and sample screening[J]. Mechatronics, 2023, 96: 103083. doi: 10.1016/j.mechatronics.2023.103083

    CrossRef Google Scholar

    [16] 程麒, 潘丰, 袁瑜键. 基于3D视觉传感器的龙门架机器人手眼标定方法[J]. 光电工程, 2021, 48(4): 200239. doi: 10.12086/oee.2021.200239

    CrossRef Google Scholar

    Cheng Q, Pan F, Yuan Y J. Hand-eye calibration method of gantry robot based on 3D vision sensor[J]. Opto-Electron Eng, 2021, 48(4): 200239. doi: 10.12086/oee.2021.200239

    CrossRef Google Scholar

    [17] 徐呈艺, 刘英, 贾民平, 等. 木板抓取机器人手眼标定方法[J]. 农业机械学报, 2019, 50(12): 420−426. doi: 10.6041/j.issn.1000-1298.2019.12.049

    CrossRef Google Scholar

    Xu C Y, Liu Y, Jia M P, et al. Method of hand-eye calibration for picking board robot[J]. Trans Chin Soc Agric Mach, 2019, 50(12): 420−426. doi: 10.6041/j.issn.1000-1298.2019.12.049

    CrossRef Google Scholar

    [18] 杨宏宇, 张豪豪, 成翔. 基于多尺度注意力特征增强的异常流量检测方法[J]. 通信学报, 2024, 45(11): 88−105. doi: 10.11959/j.issn.1000-436x.2024262

    CrossRef Google Scholar

    Yang H Y, Zhang H H, Cheng X. Abnormal traffic detection method based on multi-scale attention feature enhancement[J]. J Commun, 2024, 45(11): 88−105. doi: 10.11959/j.issn.1000-436x.2024262

    CrossRef Google Scholar

    [19] 杨海能, 唐杰, 邵武, 等. 基于规则库与PRRL模型的风电功率数据清洗方法[J]. 太阳能学报, 2024, 45(12): 416−425.

    Google Scholar

    Yang H N, Tang J, Shao W, et al. Wind power data cleaning method based on rule base and PRRL model[J]. Acta Energ Sol Sin, 2024, 45(12): 416−425.

    Google Scholar

    [20] 李新春, 谭新欢, 李琳, 等. 基于深度元学习的工控系统异常检测方法[J]. 计算机科学与探索, 2015. doi: 10.3778/j.issn.1673-9418.2410047

    CrossRef Google Scholar

    Li X C, Tan X H, Li L, et al. Deep meta learning-based anomaly detection for industrial control systems[J]. J Front Comput Sci Technol, 2015. doi: 10.3778/j.issn.1673-9418.2410047

    CrossRef Google Scholar

    [21] 张杰, 方浪森, 姚立明, 等. 基于图论及混合卷积神经网络的电力结算电量数据异常检测方法[J]. 南方电网技术, 2024. http://kns.cnki.net/kcms/detail/44.1643.tk.20241025.1656.012.html.

    Google Scholar

    Zhang J, Fang L S, Yao L M, et al. Anomaly detection method for power settlement electricity data based on graph theory and hybrid convolutional neural network[J]. South Power Syst Technol, 2024. http://kns.cnki.net/kcms/detail/44.1643.tk.20241025.1656.012.html.

    Google Scholar

    [22] Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 666–673. https://doi.org/10.1109/ICCV.1999.791289.

    Google Scholar

    [23] Chen L, Han Z, Zhong G W, et al. A novel hand-eye calibration method using double-layer optimization and outlier sample screening for monocular vision robots[J]. Meas Sci Technol, 2023, 34(7): 075016. doi: 10.1088/1361-6501/acc59f

    CrossRef Google Scholar

    [24] 班朝, 任国营, 王斌锐, 等. 融合加权SVD算法的工业机器人运动学标定[J]. 计量学报, 2021, 42(9): 1128−1135. doi: 10.3969/j.issn.1000-1158.2021.09.02

    CrossRef Google Scholar

    Ban Z, Ren Guo Y, Wang B R, et al. Kinematics calibration of industrial robot fusing weighted SVD algorithm[J]. Acta Metrol Sinica, 2021, 42(9): 1128−1135. doi: 10.3969/j.issn.1000-1158.2021.09.02

    CrossRef Google Scholar

    [25] 余承洋. 基于数据驱动的动力电池典型亚健康状态辨识[D]. 北京: 北方工业大学, 2022. https://doi.org/10.26926/d.cnki.gbfgu.2022.000681.

    Google Scholar

    Yu C Y. Identification of typical sub-health state of power battery based on data drive[D]. Beijing: North China University of Technology, 2022. https://doi.org/10.26926/d.cnki.gbfgu.2022.000681.

    Google Scholar

    [26] Fischer, Andreas and Izmailov, Alexey F, et al. The Levenberg–Marquardt method: an overview of modern convergence theories and more[J]. Comput Optim Appl, 2024, 89(1): 33−67 doi: 10.1007/s10589-024-00589-1

    CrossRef Google Scholar

    [27] 秦永元. 惯性导航[M]. 2版. 北京: 科学出版社, 2014.

    Google Scholar

    Qin Y Y. Inertial Navigation [M]. 2nd ed. Beijing: Science Press, 2014.

    Google Scholar

    [28] 刘成业, 李文广, 马世国, 等. 一种机器人工具坐标系标定方法[J]. 山东科学, 2012, 25(1): 69−74. doi: 10.3976/j.issn.1002-4026.2012.01.015

    CrossRef Google Scholar

    Liu C Y, Li W G, Ma S G, et al. A robot tool frame calibration method[J]. Shandong Sci, 2012, 25(1): 69−74. doi: 10.3976/j.issn.1002-4026.2012.01.015

    CrossRef Google Scholar

  • The surface defect repair of high-altitude wind turbine blades using repair robots is important. The vision system on the repair robot plays a crucial role in guiding the localization of defects on the blade surface, making stable and accurate hand-eye calibration of the repair robot key to successful repair. During the calibration process, various random errors, such as image distortion and inaccurate parameters, may occur, leading to unstable and inaccurate calibration results. This paper proposes an optimized hand-eye calibration method based on anomaly sample detection. Firstly, a linear equation for the hand-eye matrix is established, and its initial value is obtained by solving the equation using singular value decomposition (SVD). Next, the initial value is used to invert the samples, and anomaly samples are detected and removed based on the Z-score method, ensuring a higher accuracy hand-eye matrix. Finally, the obtained hand-eye matrix is used as the initial value for further optimization using the Levenberg-Marquardt algorithm, where the rotation is represented by unit quaternions, and the hand-eye matrix is refined. To verify the effectiveness of the proposed method, hand-eye calibration experiments were conducted on a blade repair robot equipped with a binocular depth camera. The true coordinates of the target points were obtained through TCP calibration tools, and the hand-eye matrix's predicted coordinates yielded an average Euclidean distance of 0.858 mm from the true coordinates, with the variance remaining below 0.1. Compared with other calibration methods, the proposed method effectively reduces the influence of random errors, showing excellent stability and accuracy. Moreover, this method can be widely applied to hand-eye calibration tasks for other industrial robots.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint