Shao M D, Guo J, Cui Y P, et al. Optimized design of large aperture space camera structure[J]. Opto-Electron Eng, 2025, 52(2): 240259. doi: 10.12086/oee.2025.240259
Citation: Shao M D, Guo J, Cui Y P, et al. Optimized design of large aperture space camera structure[J]. Opto-Electron Eng, 2025, 52(2): 240259. doi: 10.12086/oee.2025.240259

Optimized design of large aperture space camera structure

More Information
  • A kind of method of structural optimization design using structural deformation to compensate for optical misalignment is presented, which aims at decreasing the affection of imaging by gravity. First, on the basis of the characteristics of the optical system of a space camera, the structural forms of the main frame of the camera and the flexible support structure of the mirrors are determined. Secondly, taking the relative stiffness shift, relative inclination and face shape error of the secondary mirror, tertiary mirror, folding mirror, focusing mirror and main mirror under gravity as the optimization objectives, and the stability tolerance requirement of the optical system for each mirror as the constraints, the optimal parameters of the truss of main frame, the bearing cylinder thickness and the flexible support structure are obtained. Finally, the finite element analysis is carried out on the mode and Surface deformation of the camera, and sinusoidal sweep test and system wave aberration test are carried out on the camera. The results show that the first-order frequency of the camera is 36.7 Hz, and the average wave aberration of each field of the camera is 0.0655λ and 0.0701λ (λ=632.8 nm) under the two states of loading and flipping 180 degrees, respectively. It can be inferred that the wave aberration of the system can meet the optical design requirements after the gravity effect of the camera is disappeared. The optimized design of the camera support structure can be used as a reference for the structural design of space cameras.
  • 加载中
  • [1] 张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展[J]. 光学 精密工程, 2016, 24(11): 2613−2626. doi: 10.3788/OPE.20162411.2613

    CrossRef Google Scholar

    Zhang X J, Fan Y C, Bao H, et al. Applications and development of ultra large aperture space optical remote sensors[J]. Opt Precision Eng, 2016, 24(11): 2613−2626. doi: 10.3788/OPE.20162411.2613

    CrossRef Google Scholar

    [2] 朱仁璋, 丛云天, 王鸿芳, 等. 全球高分光学星概述(一): 美国和加拿大[J]. 航天器工程, 2015, 24(6): 85−106. doi: 10.3969/j.issn.1673-8748.2015.06.015

    CrossRef Google Scholar

    Zhu R Z, Cong Y T, Wang H F, et al. Global high-resolution optical satellite overview (1): USA and Canada[J]. Spacecr Eng, 2015, 24(6): 85−106. doi: 10.3969/j.issn.1673-8748.2015.06.015

    CrossRef Google Scholar

    [3] 卢刚, 高磊, 王彦敏. 高景一号影像多方法融合效果评价分析[J]. 遥感信息, 2018, 33(6): 124−131. doi: 10.3969/j.issn.1000-3177.2018.06.018

    CrossRef Google Scholar

    Lu G, Gao L, Wang Y M. Evaluation and analysis on multiple fusion methods for GJ-1 satellite imagery[J]. Remote Sens Inf, 2018, 33(6): 124−131. doi: 10.3969/j.issn.1000-3177.2018.06.018

    CrossRef Google Scholar

    [4] 徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学 精密工程, 2017, 25(8): 1969−1978. doi: 10.3788/OPE.20172508.1969

    CrossRef Google Scholar

    Xu W, Jin G, Wang J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J]. Opt Precision Eng, 2017, 25(8): 1969−1978. doi: 10.3788/OPE.20172508.1969

    CrossRef Google Scholar

    [5] 李玲, 赵野. 大口径空间相机地面装调时的重力卸载方法[J]. 航天返回与遥感, 2016, 37(5): 69−76. doi: 10.3969/j.issn.1009-8518.2016.05.008

    CrossRef Google Scholar

    Li L, Zhao Y. A gravity unloading method of on-ground alignment for large aperture remote sensor[J]. Spacecr Recovery Remote Sens, 2016, 37(5): 69−76. doi: 10.3969/j.issn.1009-8518.2016.05.008

    CrossRef Google Scholar

    [6] 何煦, 杨雪, 李颐, 等. 大口径空间光学望远镜重力卸载点布局优化方法[J]. 光学 精密工程, 2018, 26(11): 2764−2775. doi: 10.3788/OPE.20182611.2764

    CrossRef Google Scholar

    He X, Yang X, Li Y, et al. Gravity compensation optimization algorithm for large aperture spatial optical telescope[J]. Opt Precision Eng, 2018, 26(11): 2764−2775. doi: 10.3788/OPE.20182611.2764

    CrossRef Google Scholar

    [7] 孙熠璇, 罗世魁, 高超, 等. 大口径空间反射镜的重力卸载优化方法[J]. 红外与激光工程, 2021, 50(1): 20200103. doi: 10.3788/IRLA20200103

    CrossRef Google Scholar

    Sun Y X, Luo S K, Gao C, et al. Optimization method for large-aperture space mirror’s gravity unload[J]. Infrared and Laser Engineering, 2021, 50(1): 20200103. doi: 10.3788/IRLA20200103

    CrossRef Google Scholar

    [8] Han O, Kienholz D, Janzen P, et al. Gravity-offloading system for large-displacement ground testing of spacecraft mechanisms[C]//Proceedings of the 40th Aerospace Mechanisms Symposium, 2010: 119–132.

    Google Scholar

    [9] 白杰, 孙熠璇, 刘子嘉, 等. 空间相机地面装调重力卸载仿真优化方法[J]. 航天器环境工程, 2021, 38(4): 401−406. doi: 10.12126/see.2021.04.004

    CrossRef Google Scholar

    Bai J, Sun Y X, Liu Z J, et al. An optimization method for simulation of gravity unloading of ground-mounted space camera[J]. Spacecr Environ Eng, 2021, 38(4): 401−406. doi: 10.12126/see.2021.04.004

    CrossRef Google Scholar

    [10] Chaney D M, Hadaway J B, Lewis J A, et al. Cryogenic radius of curvature matching for the JWST primary mirror segments[J]. Astron Space Opt Syst, 2009, 7439: 743916. doi: 10.1117/12.845115

    CrossRef Google Scholar

    [11] 宋伟阳, 解鹏, 王循. 大型空间离轴三反相机分体支撑结构设计[J]. 光学 精密工程, 2021, 29(3): 571−581. doi: 10.37188/OPE.20212903.0571

    CrossRef Google Scholar

    Song W Y, Xie P, Wang X. Design of lightweight split support structure for large space off-axis three mirror camera[J]. Opt Precision Eng, 2021, 29(3): 571−581. doi: 10.37188/OPE.20212903.0571

    CrossRef Google Scholar

    [12] 席佳利, 张雷, 解鹏, 等. 离轴三反空间相机主支撑结构优化设计与试验[J]. 光电工程, 2016, 43(7): 45−51. doi: 10.3969/j.issn.1003-501X.2016.07.008

    CrossRef Google Scholar

    Xi J L, Zhang L, Xie P, et al. Optimization design and test of the supporting structure for the off-axis three-mirror reflective space camera[J]. Opto-Electron Eng, 2016, 43(7): 45−51. doi: 10.3969/j.issn.1003-501X.2016.07.008

    CrossRef Google Scholar

    [13] 李博宏, 罗健, 丘敏艳, 等. 引力波探测望远镜超低热变形桁架支撑结构设计技术[J]. 光电工程, 2023, 50(11): 230155. doi: 10.12086/oee.2023.230155

    CrossRef Google Scholar

    Li B H, Luo J, Qiu M Y, et al. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope[J]. Opto-Electron Eng, 2023, 50(11): 230155. doi: 10.12086/oee.2023.230155

    CrossRef Google Scholar

    [14] 胡守伟, 张勇, 王跃飞, 等. 三十米中国未来巨型望远镜主桁架结构的概念设计[J]. 光电工程, 2022, 49(6): 210402. doi: 10.12086/oee.2022.210402

    CrossRef Google Scholar

    Hu S W, Zhang Y, Wang Y F, et al. Concept design for the main structure of 30 m Chinese Future Giant Telescope[J]. Opto-Electron Eng, 2022, 49(6): 210402. doi: 10.12086/oee.2022.210402

    CrossRef Google Scholar

    [15] 郭疆, 朱磊, 赵继, 等. 大口径空间反射镜大容差支撑结构设计与优化[J]. 光学 精密工程, 2019, 27(5): 1138−1147. doi: 10.3788/OPE.20192705.1138

    CrossRef Google Scholar

    Guo J, Zhu L, Zhao J, et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Opt Precision Eng, 2019, 27(5): 1138−1147. doi: 10.3788/OPE.20192705.1138

    CrossRef Google Scholar

    [16] Yoder P R. 光机系统设计[M]. 周海宪, 程云芳, 译. 北京. 机械工业出版社, 2008.

    Google Scholar

    Yoder P R. Opto-Mechanical Systems Design[M]. Zhou H X, Cheng Y F, trans. Beijing: China Machine Press, 2008.

    Google Scholar

    [17] 高强, 吴艳红, 栾金择, 等. 正弦扫频速率对结构响应的影响分析[J]. 航天器环境工程, 2020, 37(3): 250−257. doi: 10.12126/see.2020.03.007

    CrossRef Google Scholar

    Gao Q, Wu Y H, Luan J Z, et al. The influence of sweep rate on the structure responses of sine-sweep excitations[J]. Spacecr Environ Eng, 2020, 37(3): 250−257. doi: 10.12126/see.2020.03.007

    CrossRef Google Scholar

    [18] 梁醒培, 王辉. 基于有限元法的结构优化设计: 原理与工程应用[M]. 北京: 清华大学出版社, 2010: 1–3.

    Google Scholar

    Liang X P, Wang H. Structural Optimization: Principles and Engineering Applications[M]. Beijing: Tsinghua University Press, 2010: 1–3.

    Google Scholar

    [19] Wang Z S, Zhang J X, Wang J X, et al. A back propagation neural network based optimizing model of space-based large mirror structure[J]. Optik, 2019, 179: 780−786. doi: 10.1016/j.ijleo.2018.09.161

    CrossRef Google Scholar

  • The mounting and test result of space optical camera on the ground is actually the result of the optical system affected by gravity. When the space camera is launched into orbit and working in the space microgravity environment, the gravity deformation of each mirror will rebound and release, resulting in the mirrors deviating from the best position of mounting, causing the optical system to misadjust. The aperture of the camera is larger, the effection of gravity is greater. A kind of method of structural optimization design using structural deformation to compensate for optical misalignment is presented, which aims at decreasing the affection of imaging by gravity. First, on the basis of the characteristics of the optical system of a space camera, the structural forms of the main frame of the camera and the flexible support structure of the mirrors are determined. Secondly, taking the relative stiffness shift, relative inclination and face shape error of the secondary mirror, tertiary mirror, folding mirror, focusing mirror and main mirror under gravity as the optimization objectives, and the stability tolerance requirement of the optical system for each mirror as the constraints, the optimal parameters of the truss of main frame, the bearing cylinder thickness and the flexible support structure are obtained. Finally, the finite element analysis is carried out on the mode and surface deformation of the camera, and sinusoidal sweep test and system wave aberration test are carried out on the camera. The results show that the first-order frequency of the camera is 36.7 Hz; the deformation of each mirror, the translation and rotation of each mirror meet the design requirements. The maximum relative translation between the folding mirror and the primary mirror is -3.4 µm, the maximum relative rotation between the focusing mirror and the primary mirror is 1.7", and the maximum surface deformation of the focusing mirror is 6.6 nm (root mean square). Under the two states of mounting and flipping 180 degrees, the average wave aberration of each field of the camera is 0.0655λ and 0.0701λ (λ=632.8 nm), respectively. It can be inferred that the wave aberration of the system can meet the optical design requirements after the gravity effect of the camera is disappeared. The optimized design of the camera support structure can be used as a reference for the structural design of space cameras.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint