Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv 1, 170001 (2018). doi: 10.29026/oea.2018.170001
Citation: Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv 1, 170001 (2018). doi: 10.29026/oea.2018.170001

Original Article Open Access

Remote-mode microsphere nano-imaging: new boundaries for optical microscopes

More Information
  • Optical microscope is one of the most popular characterization techniques for general purposes in many fields. It is distinguished from the vacuum or tip-based imaging techniques for its flexibility, low cost, and fast speed. However, its resolution limits the functionality of current optical imaging performance. While microspheres have been demonstrated for improving the observation power of optical microscope, they are directly deposited on the sample surface and thus the applications are greatly limited. We develop a remote-mode microsphere nano-imaging platform which can scan freely and in real-time across the sample surfaces. It greatly increases the observation power and successfully characterizes various practical samples with the smallest feature size down to 23 nm. This method offers many unique advantages, such as enabling the detection to be non-invasive, dynamic, real-time, and label-free, as well as leading to more functionalities in ambient air and liquid environments, which extends the nano-scale observation power to a broad scope in our life.
  • 加载中
  • [1] Clevelanda J, Montvillea T J, Nesb I F, Chikindas M L. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71, 1–20 (2001). doi: 10.1016/S0168-1605(01)00560-8

    CrossRef Google Scholar

    [2] O'Mara W C, Herring R B, Hunt L P. Handbook of Semiconductor Silicon Technology (Noyes Publications, 1990).

    Google Scholar

    [3] Bradbury S. The microscope: past and present (Pergamon Press, 1968).

    Google Scholar

    [4] Qin F, Huang K, Wu J F, Teng J H, Qiu C W et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv Mater 29, 1602721 (2017). doi: 10.1002/adma.201602721

    CrossRef Google Scholar

    [5] Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv 2, 1–9 (2016).

    Google Scholar

    [6] Qin F, Huang K, Wu J F, Jiao J, Luo X G et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci Rep 5, 9977 (2015). doi: 10.1038/srep09977

    CrossRef Google Scholar

    [7] Wang Y T, Cheng B H, Ho Y Z, Lan Y C, Luan P G et al. Gain-assisted hybrid-superlens hyperlens for nano imaging. Opt Express 20, 22953–22960 (2012). doi: 10.1364/OE.20.022953

    CrossRef Google Scholar

    [8] Lin Y H, Tsai D P. Near-field scanning optical microscopy using a super-resolution cover glass slip. Opt Express 20, 16205–16211 (2012). doi: 10.1364/OE.20.016205

    CrossRef Google Scholar

    [9] Fukaya T, Buchel D, Shinbori S, Tominaga J, Atoda N et al. Micro-optical nonlinearity of a silver oxide layer. J Appl Phys 89, 6139–6144 (2001). doi: 10.1063/1.1365434

    CrossRef Google Scholar

    [10] Li Y, Li X, Chen L W, Pu M B, Jin J J et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv Opt Mater 5, 1600502 (2017).

    Google Scholar

    [11] Li X, Chen L W, Li Yang, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [12] Huang B, Wang W Q, Bates M, Zhuang X W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008). doi: 10.1126/science.1153529

    CrossRef Google Scholar

    [13] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). doi: 10.1126/science.1127344

    CrossRef Google Scholar

    [14] Binnig G, Rohrer H. Scanning tunneling microscopy. IBM J Res Dev 4, 355–369 (1986).

    Google Scholar

    [15] Luo X. Principles of electromagnetic waves in metasurfaces. Sci China: Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [16] Wang Y T, Cheng B H, Ho Y Z, Lan Y C, Luan P G et al. Optical hybrid-superlens hyperlens for superresolution imaging. IEEE J Sel Top Quantum Electron 19, 4601305 (2013). doi: 10.1109/JSTQE.2012.2230152

    CrossRef Google Scholar

    [17] Cheng B H, Lan Y C, Tsai D P. Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt Express 21, 14898–14906 (2013). doi: 10.1364/OE.21.014898

    CrossRef Google Scholar

    [18] Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84, 4780–4782 (2004). doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [19] Tang D, Wang C, Zhao Z, Wang Y, Pu M et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182

    CrossRef Google Scholar

    [20] Editorial. So Much More to Know. Science 309, 78–102 (2005).

    Google Scholar

    [21] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J -P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [22] Pu M, Li X, Ma X, Wang Y, Zhao Z et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [23] Li X, Pu M, Wang Y, Ma X, Li Y et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2d metamaterials. Adv Opt Mater 4, 659–663 (2016).

    Google Scholar

    [24] Wang Z B, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun 2, 218 (2011). doi: 10.1038/ncomms1211

    CrossRef Google Scholar

    [25] Yang H, Trouillon R, Huszka G, Gijs M A M. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett 16, 4862–4870 (2016). doi: 10.1021/acs.nanolett.6b01255

    CrossRef Google Scholar

    [26] Darafsheh A, Guardiola C, Palovcak A, Finlay J C, Cárabe A. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt Lett 40, 5–8 (2015). doi: 10.1364/OL.40.000005

    CrossRef Google Scholar

    [27] Wang F F, Liu L Q, Yu P, Liu Z, Yu H B et al. Three-dimensional super-resolution morphology by near-field assisted white-Light interferometry. Sci Rep 6, 24703 (2016). doi: 10.1038/srep24703

    CrossRef Google Scholar

    [28] Darafsheh A, Limberopoulos N I, Derov J S, Walker D E, Astratov V N. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl Phys Lett 104, 61117 (2014). doi: 10.1063/1.4864760

    CrossRef Google Scholar

    [29] Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat Commun 7, 13748 (2016). doi: 10.1038/ncomms13748

    CrossRef Google Scholar

    [30] Born M, Wolf E. Principles of optics; electromagnetic theory of propagation, interference, and diffraction of light (Pergamon Press, 1975).

    Google Scholar

    [31] Soroko L M. Meso-optics, foundations and applications (World Scientific, 1996).

    Google Scholar

    [32] Hong M, Wu M. Immersion Nanoscope Lens Assembly Chip for Super-resolution Imaging. PRV 10201608343Y (2016).

    Google Scholar

    [33] Dunny G M, Brickman T J, Dworkin M. Multicellular behavior in bacteria, communication, cooperation, competition and cheating. Bio Essays 30, 296–298 (2008).

    Google Scholar

  • Section 1: Comparison of the imaging techniques from biological aspects
    Section 2: Photo gallery of the microsphere imaging results
    Section 3: Theoretical derivation of the imaging principles
    Section 4: Experiments to demonstrate the virtual image
    Section 5: Optimization procedure for the microsphere imaging
    Section 6: Real-time imaging results
    Section 7: Line-cut analysis for nano-dots in Fig. 3
    Video S1: The optimized location of the microsphere
    Video S2: The nano-dots' dynamic imaging results
    Video S3: The nano-rose' s dynamic imaging results
    Video S4: The imaging process of the semiconductor testing chip
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint