Citation: | Shu S L, Hou G Y, Feng J, Wang L J, Tian S C et al. Progress of optically pumped GaSb based semiconductor disk laser. Opto-Electron Adv 1, 170003 (2018). doi: 10.29026/oea.2018.170003 |
[1] | Nikitichev A A, Stepanov A I. 2-micrometer lasers for optical monitoring. J Opt Technol 66, 718-723 (1999). doi: 10.1364/JOT.66.000718 |
[2] | Mikhailova M P, Titkov A N. Type Ⅱ heterojunctions in the GaInAsSb/GaSb system. Semiconduct Sci Technol 9, 1279-1295 (1994). doi: 10.1088/0268-1242/9/7/001 |
[3] | Baranov A N, Cuminal Y, Boissier G, Nicolas J C, Lazzari J L et al. Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy. Semiconduct Sci Technol 11, 1185-1188 (1996). doi: 10.1088/0268-1242/11/8/012 |
[4] | Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D et al. Recent advances in ultrafast semiconductor disk lasers. Light: Sci Appl 4, e310 (2015). doi: 10.1038/lsa.2015.83 |
[5] | Korpijärvi V M, Kantola E L, Leinonen T, Isoaho R, Guina M. Monolithic GaInNAsSb/GaAs VECSEL operating at 1550 nm. IEEE J Sel Top Quantum Electron 21, 1700705 (2015). |
[6] | Kantola E, Leinonen T, Ranta S, Tavast M, Penttinen J P et al. 1180nm VECSEL with 50 W output power. Proc SPIE 9349, 93490U (2015). doi: 10.1117/12.2079480 |
[7] | Kantola E, Leinonen T, Penttinen J P, Korpijärvi V M, Guina M. 615 nm GaInNAs VECSEL with output power above 10 W. Opt Express 23, 20280-20287 (2015). doi: 10.1364/OE.23.020280 |
[8] | Hopkins J M, Hempler N, Rösener B, Schulz N, Rattunde M et al. High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm. Opt Lett 33, 201-203 (2008). doi: 10.1364/OL.33.000201 |
[9] | Paajaste J, Suomalainen S, Koskinen R, Härkönen A, Guina M et al. High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm. J Cryst Growth 311, 1917-1919 (2009). doi: 10.1016/j.jcrysgro.2008.10.071 |
[10] | Töpper T, Rattunde M, Kaspar S, Moser R, Manz C et al. High-power 2.0 μm semiconductor disk laser—Influence of lateral lasing. Appl Phys Lett 100, 192107 (2012). doi: 10.1063/1.4714512 |
[11] | Cerutti L, Garnache A, Ouvrard A, Genty F. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm. J Cryst Growth 268, 128-134 (2004). doi: 10.1016/j.jcrysgro.2004.02.116 |
[12] | Cerutti L, Garnache A, Ouvrard A, Garcia M, Cerda E et al. 2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with circular TEM00 output beam. Electron Lett 40, 869-871 (2004). doi: 10.1049/el:20045067 |
[13] | Paajaste J, Koskinen R, Nikkinen J, Suomalainen S, Okhotnikov O G. Power scalable 2.5 μm (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy. J Cryst Growth 323, 454-456 (2011). doi: 10.1016/j.jcrysgro.2010.11.073 |
[14] | Rösener B, Rattunde M, Moser R, Kaspar S, Manz C et al. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range. Proc SPIE 7578, 75780X (2010). doi: 10.1117/12.842148 |
[15] | Rösener B, Rattunde M, Moser R, Kaspar S, Töpper T et al. Continuous-wave room-temperature operation of a 2.8 μm GaSb-based semiconductor disk laser. Opt Lett 36, 319-321 (2011). doi: 10.1364/OL.36.000319 |
[16] | Holl P, Rattunde M, Adler S, Bächle A, Diwo-Emmer E et al. GaSb-based 2.0 μm SDL with 17 W output power at 20℃. Electron Lett 52, 1794-1795 (2016). doi: 10.1049/el.2016.2412 |
[17] | Ouvrard A, Garnache A, Cerutti L, Genty F, Romanini D. Single-frequency tunable sb-based VCSELs emitting at 2.3 μm. IEEE Photonics Technol Lett 17, 2020-2022 (2005). doi: 10.1109/LPT.2005.856341 |
[18] | Rattunde M, Schulz N, Ritzenthaler C, Rösener B, Manz C et al. High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3 μm. Proc SPIE 6479, 647915 (2007). doi: 10.1117/12.699208 |
[19] | Rösener B, Schulz N, Rattunde M, Manz C, Kohler K et al. High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser. IEEE Photonics Technol Lett 20, 502-504 (2008). doi: 10.1109/LPT.2008.918874 |
[20] | Rösener B, Rattunde M, Moser R, Manz C, Kohler K et al. GaSb-based optically pumped semiconductor disk laser using multiple gain elements. IEEE Photonics Technol Lett 21, 848-850 (2009). doi: 10.1109/LPT.2009.2019260 |
[21] | Holl P, Rattunde M, Adler S, Bächle A, Diwo-Emmer E et al. Optimization of 2.5 μm VECSEL: influence of the QW active region. Proc SPIE 9734, 97340S (2016). doi: 10.1117/12.2209548 |
[22] | Holl P, Rattunde M, Adler S, Scholle K, Lamrini S et al. GaSb-based VECSEL for high-power applications and Ho-pumping. Proc SPIE 10087, 1008705 (2017). doi: 10.1117/12.2254287 |
[23] | Holl P, Rattunde M, Adler S, Kaspar S, Bronner W et al. Recent advances in power scaling of GaSb-Based semiconductor disk lasers. IEEE J Sel Top Quantum Electron 21, 1501012 (2015). |
[24] | Manz C, Yang Q K, Rattunde M, Schulz N, Rösener B et al. Quaternary GaInAsSb/AlGaAsSb vertical-external-cavity surface-emitting lasers—A challenge for MBE growth. J Cryst Growth 311, 1920-1922 (2009). doi: 10.1016/j.jcrysgro.2008.10.111 |
[25] | Manz C, Yang Q, Köhler K, Maier M, Kirste L et al. High-quality GaInAs/AlAsSb quantum cascade lasers grown by molecular beam epitaxy in continuous growth mode. J Cryst Growth 280, 75-80 (2005). doi: 10.1016/j.jcrysgro.2005.03.059 |
[26] | Manz C, Köhler K, Kirste L, Yang Q K, Rösener B et al. Output power enhancement of 100% for quaternary GaInAsSb/ AlGaAsSb semiconductor disc lasers grown with a sequential growth scheme. J Cryst Growth 311, 4158-4161 (2009). doi: 10.1016/j.jcrysgro.2009.07.011 |
[27] | Bedford R G, Kolesik M, Chilla J L A, Reed M K, Nelson T R et al. Power-limiting mechanisms in VECSELs. Proc SPIE 5814, 199-208 (2005). doi: 10.1117/12.607428 |
[28] | Hessenius C, Fallahi M, Moloney J, Bedford R. Lateral lasing and ASE reduction in VECSELs. Proc SPIE 7919, 791909 (2011). doi: 10.1117/12.875595 |
[29] | Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V et al. Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme. Opt Lett 31, 3612-3614 (2006). doi: 10.1364/OL.31.003612 |
[30] | Saarinen E J, Härkönen A, Suomalainen S, Okhotnikov O G. Power scalable semiconductor disk laser using multiple gain cavity. Opt Express 14, 12868-12871 (2006). doi: 10.1364/OE.14.012868 |
[31] | Cerutti L, Garnache A, Genty E, Ouvrard A, Alibert C. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 µm. Electron Lett 39, 290-292 (2003). doi: 10.1049/el:20030192 |
[32] | Schulz N, Rattunde M, Manz C, Köhler K, Wild C et al. GaSb-based VECSELs emitting at around 2.35 μm employing different optical pumping concepts. Proc SPIE 6184, 61840S (2006). doi: 10.1117/12.661871 |
[33] | Schulz N, Rattunde M, Ritzenthaler C, Rösener B, Manz C et al. Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 μm. Appl Phys Lett 91, 091113 (2007). doi: 10.1063/1.2773970 |
[34] | Perez J P, Laurain A, Cerutti L, Sagnes I, Garnache A. Technologies for thermal management of mid-IR Sb-based surface emitting lasers. Semiconduct Sci Technol 25, 045021 (2010). doi: 10.1088/0268-1242/25/4/045021 |
[35] | Devautour M, Michon A, Beaudoin G, Sagnes I, Cerutti L et al. Thermal management for high-power single-frequency tunable diode-pumped VECSEL emitting in the near-and Mid-IR. IEEE J Sel Top Quantum Electron 19, 1701108 (2013). doi: 10.1109/JSTQE.2013.2245104 |
[36] | Liau Z L. Semiconductor wafer bonding via liquid capillarity. Appl Phys Lett 77, 651-653 (2000). doi: 10.1063/1.127074 |
[37] | Kaspar S, Rattunde M, Schilling C, Adler S, Holl P et al. Micro-cavity 2-μm GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader. Appl Phys Lett 103, 041117 (2013). doi: 10.1063/1.4816819 |
[38] | Schulz N, Rattunde M, Manz C, Köhler K, Wild C et al. High power continuous wave operation of a GaSb-based VECSEL emitting near 2.3 μm. Phys Status Solidi C 3, 386-390 (2006). doi: 10.1002/(ISSN)1610-1642 |
[39] | Härkönen A, Guina M, Okhotnikov O, Rößner K, Hümmer M et al. 1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm. Opt Express 14, 6479-6484 (2006). doi: 10.1364/OE.14.006479 |
[40] | Cerutti L, Garnache A, Ouvrard A, Garcia M, Genty F. Vertical Cavity Surface Emitting Laser sources for gas detection. Phys stat solidi A 202, 631-635 (2005). doi: 10.1002/pssa.v202:4 |
[41] | Hopkins J M, Maclean A J, Riis E, Schulz N, Rattunde M et al. Tunable, single-frequency, diode-pumped 2.3 μm VECSEL. Opt Express 15, 8212-8217 (2007). doi: 10.1364/OE.15.008212 |
[42] | Kaspar S, Rösener B, Rattunde M, Topper T, Manz C et al. Sub-MHz-linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser. IEEE Photonics Technol Lett 23, 1538-1540 (2011). doi: 10.1109/LPT.2011.2163930 |
[43] | Rösener B, Kaspar S, Rattunde M, Töpper T, Manz C et al. 2 μm Semiconductor disk laser with a heterodyne linewidth below 10 kHz. Opt Express 36, 3587-3589 (2011). |
[44] | Kaspar S, Rattunde M, Töpper T, Manz C, Köhler K et al. Semiconductor disk laser at 2.05 μm wavelength with < 100 kHz linewidth at 1 W output power. Appl Phys Lett 100, 031109 (2012). doi: 10.1063/1.3675637 |
[45] | Kaspar S, Rattunde M, Töpper T, Rosener B, Manz C et al. Linewidth narrowing and power scaling of single-frequency 2.X μm GaSb-based semiconductor disk lasers. IEEE J Quantum Electron 49, 314-324 (2013). doi: 10.1109/JQE.2013.2242431 |
[46] | Kaspar S, Rattunde M, Töpper T, Moser R, Adler S et al. Recent advances in 2-μm GaSb-Based semiconductor disk laser—power scaling, narrow-linewidth and short-pulse operation. IEEE J Sel Top Quantum Electron 19, 1501908 (2013). doi: 10.1109/JSTQE.2013.2244568 |
[47] | Price J H V, Monro T M, Ebendorff-Heidepriem H, Poletti F, Horak P et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE J Sel Top Quantum Electron 13, 738-749 (2007). doi: 10.1109/JSTQE.2007.896648 |
[48] | Yarborough J M, Lai Y Y, Kaneda Y, Hader J, Moloney J V et al. Record pulsed power demonstration of a 2 μm GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate. Appl Phys Lett 95, 081112 (2009). doi: 10.1063/1.3212891 |
[49] | Lai Y Y, Yarborough J M, Kaneda Y, Hader J, Moloney J V et al. 340-W peak power from a GaSb 2-μm optically pumped semiconductor laser (OPSL) grown mismatched on GaAs. IEEE Photonics Technol Lett 22, 1253-1255 (2010). doi: 10.1109/LPT.2010.2052596 |
[50] | Härkönen A, Paajaste J, Suomalainen S, Alanko J P, Grebing C et al. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2μm. Opt Lett 35, 4090-4092 (2010). doi: 10.1364/OL.35.004090 |
[51] | Härkönen A, Grebing C, Paajaste J, Koskinen R, Alanko J P et al. Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength. Electron Lett 47, 454-456 (2011). doi: 10.1049/el.2011.0253 |
[52] | Kaspar S, Rattunde M, Töpper T, Schwarz U T, Manz C et al. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power. Appl Phys Lett 101, 141121 (2012). doi: 10.1063/1.4757760 |
[53] | Shterengas L, Belenky G, Hosoda T, Kipshidze G, Suchalkin S. Continuous wave operation of diode lasers at 3.36 μm at 12 ℃. Appl Phys Lett 93, 011103 (2008). doi: 10.1063/1.2953210 |
[54] | Hosoda T, Kipshidze G, Shterengas L, Belenky G. Diode lasers emitting near 3.44 μm in continuous-wave regime at 300K. Electron Lett 46, 1455-1457 (2010). doi: 10.1049/el.2010.2564 |
[55] | Kemp A J, Valentine G J, Hopkins J M, Hastie J E, Smit S A et al. Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. IEEE J Quantum Electron 41, 148-155 (2005). doi: 10.1109/JQE.2004.839706 |
Schematic of typical SDL cavity
The output power curves of GaSb based SDL emission at 2.0 μm with different pump spot diameters. Figure reproduced from ref. 16, the Institution of Engineering & Technology.
Maximum output power of GaSb based SDLs emission at different wavelength operation at 20 ℃.
Power characteristic of the GaSb based SDL chips with patterned side facets and with cleaved side facets pumped by two different pump spot sizes. Figure reproduced from ref. 10, AIP Publishing.
Output power of the GaSb based SDLs by using the two gain element structures at heat sink temperature of 20 ℃ with different reflectivity of the output coupling (OC) mirror. Figure reproduced from ref. 20, IEEE.
Schematic representations of the two main thermal management methods. (a) Substrate removing; (b) Intracavity heat spreader.
2.0 μm GaSb based SDL with narrow line-width singlefrequency emission. Figure reproduced from ref. 46, IEEE.
(a) Optical spectrum together with sech2 fit; (b) Measured interferometric autocorrelation; (c) Intensity autocorrelation retrieved from interferometric autocorrelation data and intensity autocorrelation of bandwidth limited pulse computed from spectrum in Fig. 9(a); (d) Pulse shape and Fourier transform limit. Figure reproduced from ref. 51, the Institution of Engineering & Technology.
Experimental setup and optical measurement arrangement. Figure reproduced from ref. 51, the Institution of Engineering & Technology.