Shu S L, Hou G Y, Feng J, Wang L J, Tian S C et al. Progress of optically pumped GaSb based semiconductor disk laser. Opto-Electron Adv 1, 170003 (2018). doi: 10.29026/oea.2018.170003
Citation: Shu S L, Hou G Y, Feng J, Wang L J, Tian S C et al. Progress of optically pumped GaSb based semiconductor disk laser. Opto-Electron Adv 1, 170003 (2018). doi: 10.29026/oea.2018.170003

Progress of optically pumped GaSb based semiconductor disk laser

More Information
  • This paper reviewed the development of optically pumped GaSb based semiconductor disk lasers (SDLs) emission at 2 μm wavelength region from the aspects of wavelength extending, power scaling, line-width narrowing and short-pulse generation. Most recently, the wavelength of GaSb based SDLs has been extended to 2.8 μm. The highest output power of the GaSb based SDLs has been reached to 17 W at the temperature of 20 ℃. By using active stabilization, the GaSb based SDL with line-width of 20 kHz and output power of 1 W was realized. Moreover, the shortest pulse obtained from the GaSb based SDLs was generated as short as 384 fs by incorporating semiconductor saturable absorber mirrors (SESAM) in the cavity.
  • 加载中
  • [1] Nikitichev A A, Stepanov A I. 2-micrometer lasers for optical monitoring. J Opt Technol 66, 718-723 (1999). doi: 10.1364/JOT.66.000718

    CrossRef Google Scholar

    [2] Mikhailova M P, Titkov A N. Type Ⅱ heterojunctions in the GaInAsSb/GaSb system. Semiconduct Sci Technol 9, 1279-1295 (1994). doi: 10.1088/0268-1242/9/7/001

    CrossRef Google Scholar

    [3] Baranov A N, Cuminal Y, Boissier G, Nicolas J C, Lazzari J L et al. Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy. Semiconduct Sci Technol 11, 1185-1188 (1996). doi: 10.1088/0268-1242/11/8/012

    CrossRef Google Scholar

    [4] Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D et al. Recent advances in ultrafast semiconductor disk lasers. Light: Sci Appl 4, e310 (2015). doi: 10.1038/lsa.2015.83

    CrossRef Google Scholar

    [5] Korpijärvi V M, Kantola E L, Leinonen T, Isoaho R, Guina M. Monolithic GaInNAsSb/GaAs VECSEL operating at 1550 nm. IEEE J Sel Top Quantum Electron 21, 1700705 (2015).

    Google Scholar

    [6] Kantola E, Leinonen T, Ranta S, Tavast M, Penttinen J P et al. 1180nm VECSEL with 50 W output power. Proc SPIE 9349, 93490U (2015). doi: 10.1117/12.2079480

    CrossRef Google Scholar

    [7] Kantola E, Leinonen T, Penttinen J P, Korpijärvi V M, Guina M. 615 nm GaInNAs VECSEL with output power above 10 W. Opt Express 23, 20280-20287 (2015). doi: 10.1364/OE.23.020280

    CrossRef Google Scholar

    [8] Hopkins J M, Hempler N, Rösener B, Schulz N, Rattunde M et al. High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm. Opt Lett 33, 201-203 (2008). doi: 10.1364/OL.33.000201

    CrossRef Google Scholar

    [9] Paajaste J, Suomalainen S, Koskinen R, Härkönen A, Guina M et al. High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm. J Cryst Growth 311, 1917-1919 (2009). doi: 10.1016/j.jcrysgro.2008.10.071

    CrossRef Google Scholar

    [10] Töpper T, Rattunde M, Kaspar S, Moser R, Manz C et al. High-power 2.0 μm semiconductor disk laser—Influence of lateral lasing. Appl Phys Lett 100, 192107 (2012). doi: 10.1063/1.4714512

    CrossRef Google Scholar

    [11] Cerutti L, Garnache A, Ouvrard A, Genty F. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm. J Cryst Growth 268, 128-134 (2004). doi: 10.1016/j.jcrysgro.2004.02.116

    CrossRef Google Scholar

    [12] Cerutti L, Garnache A, Ouvrard A, Garcia M, Cerda E et al. 2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with circular TEM00 output beam. Electron Lett 40, 869-871 (2004). doi: 10.1049/el:20045067

    CrossRef Google Scholar

    [13] Paajaste J, Koskinen R, Nikkinen J, Suomalainen S, Okhotnikov O G. Power scalable 2.5 μm (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy. J Cryst Growth 323, 454-456 (2011). doi: 10.1016/j.jcrysgro.2010.11.073

    CrossRef Google Scholar

    [14] Rösener B, Rattunde M, Moser R, Kaspar S, Manz C et al. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range. Proc SPIE 7578, 75780X (2010). doi: 10.1117/12.842148

    CrossRef Google Scholar

    [15] Rösener B, Rattunde M, Moser R, Kaspar S, Töpper T et al. Continuous-wave room-temperature operation of a 2.8 μm GaSb-based semiconductor disk laser. Opt Lett 36, 319-321 (2011). doi: 10.1364/OL.36.000319

    CrossRef Google Scholar

    [16] Holl P, Rattunde M, Adler S, Bächle A, Diwo-Emmer E et al. GaSb-based 2.0 μm SDL with 17 W output power at 20℃. Electron Lett 52, 1794-1795 (2016). doi: 10.1049/el.2016.2412

    CrossRef Google Scholar

    [17] Ouvrard A, Garnache A, Cerutti L, Genty F, Romanini D. Single-frequency tunable sb-based VCSELs emitting at 2.3 μm. IEEE Photonics Technol Lett 17, 2020-2022 (2005). doi: 10.1109/LPT.2005.856341

    CrossRef Google Scholar

    [18] Rattunde M, Schulz N, Ritzenthaler C, Rösener B, Manz C et al. High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3 μm. Proc SPIE 6479, 647915 (2007). doi: 10.1117/12.699208

    CrossRef Google Scholar

    [19] Rösener B, Schulz N, Rattunde M, Manz C, Kohler K et al. High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser. IEEE Photonics Technol Lett 20, 502-504 (2008). doi: 10.1109/LPT.2008.918874

    CrossRef Google Scholar

    [20] Rösener B, Rattunde M, Moser R, Manz C, Kohler K et al. GaSb-based optically pumped semiconductor disk laser using multiple gain elements. IEEE Photonics Technol Lett 21, 848-850 (2009). doi: 10.1109/LPT.2009.2019260

    CrossRef Google Scholar

    [21] Holl P, Rattunde M, Adler S, Bächle A, Diwo-Emmer E et al. Optimization of 2.5 μm VECSEL: influence of the QW active region. Proc SPIE 9734, 97340S (2016). doi: 10.1117/12.2209548

    CrossRef Google Scholar

    [22] Holl P, Rattunde M, Adler S, Scholle K, Lamrini S et al. GaSb-based VECSEL for high-power applications and Ho-pumping. Proc SPIE 10087, 1008705 (2017). doi: 10.1117/12.2254287

    CrossRef Google Scholar

    [23] Holl P, Rattunde M, Adler S, Kaspar S, Bronner W et al. Recent advances in power scaling of GaSb-Based semiconductor disk lasers. IEEE J Sel Top Quantum Electron 21, 1501012 (2015).

    Google Scholar

    [24] Manz C, Yang Q K, Rattunde M, Schulz N, Rösener B et al. Quaternary GaInAsSb/AlGaAsSb vertical-external-cavity surface-emitting lasers—A challenge for MBE growth. J Cryst Growth 311, 1920-1922 (2009). doi: 10.1016/j.jcrysgro.2008.10.111

    CrossRef Google Scholar

    [25] Manz C, Yang Q, Köhler K, Maier M, Kirste L et al. High-quality GaInAs/AlAsSb quantum cascade lasers grown by molecular beam epitaxy in continuous growth mode. J Cryst Growth 280, 75-80 (2005). doi: 10.1016/j.jcrysgro.2005.03.059

    CrossRef Google Scholar

    [26] Manz C, Köhler K, Kirste L, Yang Q K, Rösener B et al. Output power enhancement of 100% for quaternary GaInAsSb/ AlGaAsSb semiconductor disc lasers grown with a sequential growth scheme. J Cryst Growth 311, 4158-4161 (2009). doi: 10.1016/j.jcrysgro.2009.07.011

    CrossRef Google Scholar

    [27] Bedford R G, Kolesik M, Chilla J L A, Reed M K, Nelson T R et al. Power-limiting mechanisms in VECSELs. Proc SPIE 5814, 199-208 (2005). doi: 10.1117/12.607428

    CrossRef Google Scholar

    [28] Hessenius C, Fallahi M, Moloney J, Bedford R. Lateral lasing and ASE reduction in VECSELs. Proc SPIE 7919, 791909 (2011). doi: 10.1117/12.875595

    CrossRef Google Scholar

    [29] Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V et al. Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme. Opt Lett 31, 3612-3614 (2006). doi: 10.1364/OL.31.003612

    CrossRef Google Scholar

    [30] Saarinen E J, Härkönen A, Suomalainen S, Okhotnikov O G. Power scalable semiconductor disk laser using multiple gain cavity. Opt Express 14, 12868-12871 (2006). doi: 10.1364/OE.14.012868

    CrossRef Google Scholar

    [31] Cerutti L, Garnache A, Genty E, Ouvrard A, Alibert C. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 µm. Electron Lett 39, 290-292 (2003). doi: 10.1049/el:20030192

    CrossRef Google Scholar

    [32] Schulz N, Rattunde M, Manz C, Köhler K, Wild C et al. GaSb-based VECSELs emitting at around 2.35 μm employing different optical pumping concepts. Proc SPIE 6184, 61840S (2006). doi: 10.1117/12.661871

    CrossRef Google Scholar

    [33] Schulz N, Rattunde M, Ritzenthaler C, Rösener B, Manz C et al. Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 μm. Appl Phys Lett 91, 091113 (2007). doi: 10.1063/1.2773970

    CrossRef Google Scholar

    [34] Perez J P, Laurain A, Cerutti L, Sagnes I, Garnache A. Technologies for thermal management of mid-IR Sb-based surface emitting lasers. Semiconduct Sci Technol 25, 045021 (2010). doi: 10.1088/0268-1242/25/4/045021

    CrossRef Google Scholar

    [35] Devautour M, Michon A, Beaudoin G, Sagnes I, Cerutti L et al. Thermal management for high-power single-frequency tunable diode-pumped VECSEL emitting in the near-and Mid-IR. IEEE J Sel Top Quantum Electron 19, 1701108 (2013). doi: 10.1109/JSTQE.2013.2245104

    CrossRef Google Scholar

    [36] Liau Z L. Semiconductor wafer bonding via liquid capillarity. Appl Phys Lett 77, 651-653 (2000). doi: 10.1063/1.127074

    CrossRef Google Scholar

    [37] Kaspar S, Rattunde M, Schilling C, Adler S, Holl P et al. Micro-cavity 2-μm GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader. Appl Phys Lett 103, 041117 (2013). doi: 10.1063/1.4816819

    CrossRef Google Scholar

    [38] Schulz N, Rattunde M, Manz C, Köhler K, Wild C et al. High power continuous wave operation of a GaSb-based VECSEL emitting near 2.3 μm. Phys Status Solidi C 3, 386-390 (2006). doi: 10.1002/(ISSN)1610-1642

    CrossRef Google Scholar

    [39] Härkönen A, Guina M, Okhotnikov O, Rößner K, Hümmer M et al. 1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm. Opt Express 14, 6479-6484 (2006). doi: 10.1364/OE.14.006479

    CrossRef Google Scholar

    [40] Cerutti L, Garnache A, Ouvrard A, Garcia M, Genty F. Vertical Cavity Surface Emitting Laser sources for gas detection. Phys stat solidi A 202, 631-635 (2005). doi: 10.1002/pssa.v202:4

    CrossRef Google Scholar

    [41] Hopkins J M, Maclean A J, Riis E, Schulz N, Rattunde M et al. Tunable, single-frequency, diode-pumped 2.3 μm VECSEL. Opt Express 15, 8212-8217 (2007). doi: 10.1364/OE.15.008212

    CrossRef Google Scholar

    [42] Kaspar S, Rösener B, Rattunde M, Topper T, Manz C et al. Sub-MHz-linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser. IEEE Photonics Technol Lett 23, 1538-1540 (2011). doi: 10.1109/LPT.2011.2163930

    CrossRef Google Scholar

    [43] Rösener B, Kaspar S, Rattunde M, Töpper T, Manz C et al. 2 μm Semiconductor disk laser with a heterodyne linewidth below 10 kHz. Opt Express 36, 3587-3589 (2011).

    Google Scholar

    [44] Kaspar S, Rattunde M, Töpper T, Manz C, Köhler K et al. Semiconductor disk laser at 2.05 μm wavelength with < 100 kHz linewidth at 1 W output power. Appl Phys Lett 100, 031109 (2012). doi: 10.1063/1.3675637

    CrossRef Google Scholar

    [45] Kaspar S, Rattunde M, Töpper T, Rosener B, Manz C et al. Linewidth narrowing and power scaling of single-frequency 2.X μm GaSb-based semiconductor disk lasers. IEEE J Quantum Electron 49, 314-324 (2013). doi: 10.1109/JQE.2013.2242431

    CrossRef Google Scholar

    [46] Kaspar S, Rattunde M, Töpper T, Moser R, Adler S et al. Recent advances in 2-μm GaSb-Based semiconductor disk laser—power scaling, narrow-linewidth and short-pulse operation. IEEE J Sel Top Quantum Electron 19, 1501908 (2013). doi: 10.1109/JSTQE.2013.2244568

    CrossRef Google Scholar

    [47] Price J H V, Monro T M, Ebendorff-Heidepriem H, Poletti F, Horak P et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE J Sel Top Quantum Electron 13, 738-749 (2007). doi: 10.1109/JSTQE.2007.896648

    CrossRef Google Scholar

    [48] Yarborough J M, Lai Y Y, Kaneda Y, Hader J, Moloney J V et al. Record pulsed power demonstration of a 2 μm GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate. Appl Phys Lett 95, 081112 (2009). doi: 10.1063/1.3212891

    CrossRef Google Scholar

    [49] Lai Y Y, Yarborough J M, Kaneda Y, Hader J, Moloney J V et al. 340-W peak power from a GaSb 2-μm optically pumped semiconductor laser (OPSL) grown mismatched on GaAs. IEEE Photonics Technol Lett 22, 1253-1255 (2010). doi: 10.1109/LPT.2010.2052596

    CrossRef Google Scholar

    [50] Härkönen A, Paajaste J, Suomalainen S, Alanko J P, Grebing C et al. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2μm. Opt Lett 35, 4090-4092 (2010). doi: 10.1364/OL.35.004090

    CrossRef Google Scholar

    [51] Härkönen A, Grebing C, Paajaste J, Koskinen R, Alanko J P et al. Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength. Electron Lett 47, 454-456 (2011). doi: 10.1049/el.2011.0253

    CrossRef Google Scholar

    [52] Kaspar S, Rattunde M, Töpper T, Schwarz U T, Manz C et al. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power. Appl Phys Lett 101, 141121 (2012). doi: 10.1063/1.4757760

    CrossRef Google Scholar

    [53] Shterengas L, Belenky G, Hosoda T, Kipshidze G, Suchalkin S. Continuous wave operation of diode lasers at 3.36 μm at 12 ℃. Appl Phys Lett 93, 011103 (2008). doi: 10.1063/1.2953210

    CrossRef Google Scholar

    [54] Hosoda T, Kipshidze G, Shterengas L, Belenky G. Diode lasers emitting near 3.44 μm in continuous-wave regime at 300K. Electron Lett 46, 1455-1457 (2010). doi: 10.1049/el.2010.2564

    CrossRef Google Scholar

    [55] Kemp A J, Valentine G J, Hopkins J M, Hastie J E, Smit S A et al. Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. IEEE J Quantum Electron 41, 148-155 (2005). doi: 10.1109/JQE.2004.839706

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint