Citation: | Zheng Y, Wu Z F, Shum P P, Xu Z L, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv1, 180015 (2018). doi: 10.29026/oea.2018.180015 |
[1] | Rayleigh L. CXII. The problem of the whispering gallery. Philos Mag 20, 1001-1004 (1910). doi: 10.1080/14786441008636993 |
[2] | Garrett C G B, Kaiser W, Bond W L. Stimulated emission into optical whispering modes of spheres. Phys Rev 124, 1807-1809 (1961). doi: 10.1103/PhysRev.124.1807 |
[3] | Humar M, Yun S H. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies. Optica 4, 222-228 (2017). doi: 10.1364/OPTICA.4.000222 |
[4] | Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photonics 4, 46-49 (2010). doi: 10.1038/nphoton.2009.237 |
[5] | Baaske M D, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat Photonics 10, 733-739 (2016). doi: 10.1038/nphoton.2016.177 |
[6] | Matsko A B, Ilchenko V S. Optical resonators with whispering-gallery modes - Part Ⅰ: Basics. IEEE J Sel Top Quantum Electron 12, 3-14 (2006). doi: 10.1109/JSTQE.2005.862952 |
[7] | Loh W, Green A A S, Baynes F N, Cole D C, Quinlan F J et al. Dual-microcavity narrow-linewidth Brillouin laser. Optica 2, 225-232 (2015). doi: 10.1364/OPTICA.2.000225 |
[8] | Kiraz A, Chen Q S, Fan X D. Optofluidic lasers with aqueous quantum dots. ACS Photonics 2, 707-713 (2015). doi: 10.1021/acsphotonics.5b00211 |
[9] | Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities. Adv Opt Mater 3, 1136-1162 (2015). doi: 10.1002/adom.201500232 |
[10] | He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser Photonics Rev 7, 60-82 (2013). doi: 10.1002/lpor.2013.7.issue-1 |
[11] | Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors. Adv Opt Photonics 7, 168-240 (2015). doi: 10.1364/AOP.7.000168 |
[12] | Righini G C, Dumeige Y, Féron P, Ferrari M, Nunzi Conti G et al. Whispering gallery mode microresonators: fundamentals and applications. La Rivista del Nuovo Cimento 34, 435-488 (2011). doi: 10.1360/132012-602 |
[13] | Gohring J T, Dale P S, Fan X D. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sensors Actuators B Chem 146, 226-230 (2010). doi: 10.1016/j.snb.2010.01.067 |
[14] | Lam C C, Leung P T, Young K. Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. JOSA B 9, 1585-1592 (1992). doi: 10.1364/JOSAB.9.001585 |
[15] | Tang S K Y, Derda R, Quan Q M, Lončar M, Whitesides G M. Continuously tunable microdroplet-laser in a microfluidic channel. Opt Express 19, 2204-2215 (2011). doi: 10.1364/OE.19.002204 |
[16] | Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L. Optical resonators with ten million finesse. Opt Express 15, 6768-6773 (2007). doi: 10.1364/OE.15.006768 |
[17] | Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators. Opt Lett 21, 453-455 (1996). doi: 10.1364/OL.21.000453 |
[18] | Ta V D. Flexible whispering gallery mode optical microcavities for lasers and sensors (Nanyang Technological University, Singapore, 2014). |
[19] | Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I et al. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80, 4057-4059 (2002). doi: 10.1063/1.1482797 |
[20] | Baaske M D, Foreman M R, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 9, 933-939 (2014). doi: 10.1038/nnano.2014.180 |
[21] | Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl Phys Lett 83, 1527-1529 (2003). doi: 10.1063/1.1605261 |
[22] | McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Appl Phys Lett 60, 289-291 (1992). doi: 10.1063/1.106688 |
[23] | Sumetsky M, Dulashko Y, Windeler R S. Super free spectral range tunable optical microbubble resonator. Opt Lett 35, 1866-1868 (2010). doi: 10.1364/OL.35.001866 |
[24] | Lee W, Sun Y Z, Li H, Reddy K, Sumetsky M et al. A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Appl Phys Lett 99, 091102 (2011). doi: 10.1063/1.3629814 |
[25] | Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots. Nano Lett 17, 2640-2646 (2017). doi: 10.1021/acs.nanolett.7b00447 |
[26] | François A, Riesen N, Gardner K, Monro T M, Meldrum A. Lasing of whispering gallery modes in optofluidic microcapillaries. Opt Express 24, 12466 (2016). doi: 10.1364/OE.24.012466 |
[27] | White I M, Oveys H, Fan X D. Liquid-core optical ring-resonator sensors. Opt Lett 31, 1319-1321 (2006). doi: 10.1364/OL.31.001319 |
[28] | Sarid D. High efficiency input-output prism waveguide coupler: an analysis. Appl Opt 18, 2921-2926 (1979). doi: 10.1364/AO.18.002921 |
[29] | Schiller S, Byer R L. High-resolution spectroscopy of whispering gallery modes in large dielectric spheres. Opt Lett 16, 1138-1140 (1991). doi: 10.1364/OL.16.001138 |
[30] | Gorodetsky M L, Ilchenko V S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. JOSA B 16, 147-154 (1999). doi: 10.1364/JOSAB.16.000147 |
[31] | Ilchenko V S, Yao X S, Maleki L. Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes. Opt Lett 24, 723-725 (1999). doi: 10.1364/OL.24.000723 |
[32] | Knight J C, Cheung G, Jacques F, Birks T A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett 22, 1129-1131 (1997). doi: 10.1364/OL.22.001129 |
[33] | Dumeige Y, Trebaol S, Ghişa L, Nguyên T K N, Tavernier H et al. Determination of coupling regime of high-Q amplifiers resonators and optical gain of highly selective amplifiers. JOSA B 25, 2073-2080 (2008). doi: 10.1364/JOSAB.25.002073 |
[34] | Duan Z H, Wang Y J, Li G, Wang S, Yi N B et al. Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array. Laser Photonics Rev 12, 1700234 (2018). doi: 10.1002/lpor.v12.1 |
[35] | Huang S H, Sheth S, Jain E, Jiang X F, Zustiak S P et al. Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation. Opt Express 26, 51-62 (2018). doi: 10.1364/OE.26.000051 |
[36] | Ward J M, Yang Y, Chormaic S N. Highly sensitive temperature measurements with liquid-core microbubble resonators. IEEE Photonic Technol Lett 25, 2350-2353 (2013). doi: 10.1109/LPT.2013.2283732 |
[37] | Ward J M, Yang Y, Chormaic S N. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci Rep 6, 25152 (2016). doi: 10.1038/srep25152 |
[38] | He C H, Sun H J, Mo J, Yang C, Feng G Y et al. Temperature sensor based on high-Q polymethylmethacrylate optical microbubble. Laser Phys, 28, 076202 (2018). doi: 10.1088/1555-6611/aab452 |
[39] | Yang Y, Lei F C, Kasumie S, Xu L H, Ward J M et al. Tunable erbium-doped microbubble laser fabricated by sol-gel coating. Opt Express, 25, 1308-1313 (2017). doi: 10.1364/OE.25.001308 |
[40] | Han K, Kim J, Bahl G. High-throughput sensing of freely flowing particles with optomechanofluidics. Optica 3, 585-591 (2016). doi: 10.1364/OPTICA.3.000585 |
[41] | Su J, Goldberg A F, Stoltz B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5, e16001 (2016). doi: 10.1038/lsa.2016.1 |
[42] | Ghali H, Chibli H, Nadeau J L, Bianucci P, Peter Y A. Real-time detection of Staphylococcus aureus using Whispering Gallery Mode optical microdisks. Biosensors 6, 20 (2016). doi: 10.3390/bios6020020 |
[43] | Swaim J D, Knittel J, Bowen W P. Detection limits in whispering gallery biosensors with plasmonic enhancement. Appl Phys Lett 99, 243109 (2011). doi: 10.1063/1.3669398 |
[44] | Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C et al. Optical microresonators as single-particle absorption spectrometers. Nat Photonics 10, 788-795 (2016). doi: 10.1038/nphoton.2016.217 |
[45] | Hanumegowda N M, Stica C J, Patel B C, White I, Fan X D. Refractometric sensors based on microsphere resonators. Appl Phys Lett 87, 201107 (2005). doi: 10.1063/1.2132076 |
[46] | Ta V D, Chen R, Sun H D. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv Opt Mater 2, 220-225 (2014). doi: 10.1002/adom.v2.3 |
[47] | Zhu H Y, White I M, Suter J D, Zourob M, Fan X D. Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal Chem 79, 930-937 (2007). doi: 10.1021/ac061279q |
[48] | Kang Y Q, François A, Riesen N, Monro T M. Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry. Sensors 18, 2987 (2018). doi: 10.3390/s18092987 |
[49] | Wan L, Chandrahalim H, Zhou J, Li Z H, Chen C et al. Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing. Opt Express 26, 5800-5809 (2018). doi: 10.1364/OE.26.005800 |
[50] | Krämmer S, Rastjoo S, Siegle T, Wondimu S F, Klusmann C et al. Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance. Opt Express 25, 7884-7894 (2017). doi: 10.1364/OE.25.007884 |
[51] | Ren L Q, Zhang X W, Guo X X, Wang H T, Wu X. High-sensitivity optofluidic sensor based on coupled liquid-core laser. IEEE Photonics Technol Lett 29, 639-642 (2017). doi: 10.1109/LPT.2017.2647959 |
[52] | Wu C W, Liu K C, Chiang C C. A novel U-shaped and microchanneled optical fiber temperature sensor fabricated by LIGA-like process. IEEE Sensors J 17, 5444-5449 (2017). doi: 10.1109/JSEN.2017.2724298 |
[53] | Zeltner R, Pennetta R, Xie S R, Russell P S J. Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber. Opt Lett 43, 1479-1482 (2018). doi: 10.1364/OL.43.001479 |
[54] | Nawrocka M S, Liu T, Wang X, Panepucci R R. Tunable silicon microring resonator with wide free spectral range. Appl Phys Lett 89, 071110 (2006). doi: 10.1063/1.2337162 |
[55] | Zhao L Y, Wang Y, Yuan Y G, Liu Y J, Liu S Q et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor. Opt Commun 402, 181-185 (2017). doi: 10.1016/j.optcom.2017.06.008 |
[56] | de Sousa-Vieira L, Ríos S, Martín I R, García-Rodríguez L, Sigaev V N et al. Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window. Opt Mater 83, 207-211 (2018). doi: 10.1016/j.optmat.2018.06.014 |
[57] | Liu Z H, Liu L, Zhu Z D, Zhang Y, Wei Y et al. Whispering gallery mode temperature sensor of liquid microresonastor. Opt Lett 41, 4649-4652 (2016). doi: 10.1364/OL.41.004649 |
[58] | Eryürek M, Tasdemir Z, Karadag Y, Anand S, Kilinc N et al. Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sensors Actuators B Chem 242, 1115-1120 (2017). doi: 10.1016/j.snb.2016.09.136 |
[59] | Labrador-Páez L, Soler-Carracedo K, Hernández-Rodríguez M, Martín I R, Carmon T et al. Liquid whispering-gallery-mode resonator as a humidity sensor. Opt Express 25, 1165-1172 (2017). doi: 10.1364/OE.25.001165 |
[60] | Huang Q L, Xu H L, Li M T, Hou Z S, Lv C et al. Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness. J Light Technol 36, 819-824 (2018). doi: 10.1109/JLT.2017.2762696 |
[61] | Jiang X F, Xiao Y F, Zou C L, He L, Dong C H et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater 24, OP260-OP264 (2012). doi: 10.1002/adma.201201229 |
[62] | Munnelly P, Lingnau B, Karow M M, Heindel T, Kamp M et al. On-chip optoelectronic feedback in a micropillar laser-detector assembly. Optica 4, 303-306 (2017). doi: 10.1364/OPTICA.4.000303 |
[63] | Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J et al. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 8, 16631-16639 (2016). doi: 10.1039/C6NR04943E |
[64] | Chandrahalim H, Chen Q S, Said A A, Dugan M, Fan X D. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication. Lab Chip 15, 2335-2340 (2015). doi: 10.1039/C5LC00254K |
[65] | Lim J, Savchenkov A A, Dale E, Liang W, Eliyahu D et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat Commun 8, 8 (2017). doi: 10.1038/s41467-017-00021-9 |
[66] | Fernandez-Bravo A, Yao K Y, Barnard E S, Borys N J, Levy E S et al. Continuous-wave upconverting nanoparticle microlasers. Nat Nanotechnol 13, 572-577 (2018). doi: 10.1038/s41565-018-0161-8 |
[67] | Moiseev E, Kryzhanovskaya N, Maximov M, Zubov F, Nadtochiy A et al. Highly efficient injection microdisk lasers based on quantum well-dots. Opt Lett 43, 4554-4557 (2018). doi: 10.1364/OL.43.004554 |
[68] | Zhu S, Shi L, Xiao B W, Zhang X L, Fan X D. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics 5, 3794-3800 (2018). doi: 10.1021/acsphotonics.8b00838 |
[69] | Kim Y, Lee S Y, Ryu J W, Kim I, Han J H et al. Designing whispering gallery modes via transformation optics. Nat Photonics 10, 647-652 (2016). doi: 10.1038/nphoton.2016.184 |
[70] | Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S et al. Toward on-chip unidirectional and single-mode polymer microlaser. J Light Technol 35, 2331-2336 (2017). doi: 10.1109/JLT.2017.2671402 |
[71] | Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat Commun 6, 6193 (2015). doi: 10.1038/ncomms7193 |
[72] | Förtsch M, Fürst J U, Wittmann C, Strekalov D, Aiello A et al. A versatile source of single photons for quantum information processing. Nat Commun 4, 1818 (2013). doi: 10.1038/ncomms2838 |
[73] | Pfeifle J, Coillet A, Henriet R, Saleh K, Schindler P et al. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys Rev Lett 114, 093902 (2015). doi: 10.1103/PhysRevLett.114.093902 |
[74] | Monifi F, Özdemir Ş K, Yang L. Tunable add-drop filter using an active whispering gallery mode microcavity. Appl Phys Lett 103, 181103 (2013). doi: 10.1063/1.4827637 |
[75] | O'Shea D, Junge C, Pöllinger M, Vogler A, Rauschenbeutel A. All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators. Appl Phys B 105, 129-148 (2011). doi: 10.1007/s00340-011-4714-x |
[76] | Jiang X F, Zou C L, Wang L, Gong Q H, Xiao Y F. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev 10, 40-61 (2016). doi: 10.1002/lpor.201500163 |
Schematic of light trapping inside a WGM microcavity by frustrated total internal reflection.
Different methods of exciting WGMs.
(a) Layout of the WGM sensing set-up. (b), (c) Transient interactions of single zinc or mercury ions with the NRs with the corresponding spectrum shifts. Figure reproduced from ref.5, Springer Nature.
The illustration of the coupled liquid-core laser.
(a) Scanning electron micrograph of a polystyrene bead coated with ELNPs. (b) Left: wide-field image of a lasing microsphere. Right: simulated field distributions in the x–y plane. (c) Simulated NIR spectra of WGMs supported by a 5-µm polystyrene microsphere. Figure reproduced from ref.66, Springer Nature.
(a) Schematic of an all-optical tunable microlaser. (b) Fabrication process of the erbium-doped hybrid microbottle cavity coated with iron oxide nanoparticles. Figure reproduced from ref.68, American Chemical Society.
Illustrations of aqueous QDs (a) in solution inside an OFRR and (b) immobilized as a single layer on the inner surface of an OFRR. (c) Illustration of the experimental setup using confocal geometry. Figure reproduced from ref.8, American Chemical Society.
Diagram and operation of the dual-microcavity narrowlinewidth laser.