Zheng Y, Wu Z F, Shum P P, Xu Z L, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv1, 180015 (2018). doi: 10.29026/oea.2018.180015
Citation: Zheng Y, Wu Z F, Shum P P, Xu Z L, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv1, 180015 (2018). doi: 10.29026/oea.2018.180015

Review Open Access

Sensing and lasing applications of whispering gallery mode microresonators

More Information
  • Optical whispering gallery mode (WGM) microresonators have attracted great attention due to their remarkable properties such as extremely high quality factor, small mode volume, tight confinement of modes, and strong evanescent field. All these properties of WGM microresonators have ensured their great potentials for applications, such as physical sensors, bio/chemical sensors and microlasers. In this mini-review, the key parameters and coupling conditions of WGM microresonators are firstly introduced. The geometries of WGM optical microcavities are presented based on their fabrication methods. This is followed by the discussion on the state-of-the-art applications of WGM microresonators in sensors and microlasers.
  • 加载中
  • [1] Rayleigh L. CXII. The problem of the whispering gallery. Philos Mag 20, 1001-1004 (1910). doi: 10.1080/14786441008636993

    CrossRef Google Scholar

    [2] Garrett C G B, Kaiser W, Bond W L. Stimulated emission into optical whispering modes of spheres. Phys Rev 124, 1807-1809 (1961). doi: 10.1103/PhysRev.124.1807

    CrossRef Google Scholar

    [3] Humar M, Yun S H. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies. Optica 4, 222-228 (2017). doi: 10.1364/OPTICA.4.000222

    CrossRef Google Scholar

    [4] Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photonics 4, 46-49 (2010). doi: 10.1038/nphoton.2009.237

    CrossRef Google Scholar

    [5] Baaske M D, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat Photonics 10, 733-739 (2016). doi: 10.1038/nphoton.2016.177

    CrossRef Google Scholar

    [6] Matsko A B, Ilchenko V S. Optical resonators with whispering-gallery modes - Part Ⅰ: Basics. IEEE J Sel Top Quantum Electron 12, 3-14 (2006). doi: 10.1109/JSTQE.2005.862952

    CrossRef Google Scholar

    [7] Loh W, Green A A S, Baynes F N, Cole D C, Quinlan F J et al. Dual-microcavity narrow-linewidth Brillouin laser. Optica 2, 225-232 (2015). doi: 10.1364/OPTICA.2.000225

    CrossRef Google Scholar

    [8] Kiraz A, Chen Q S, Fan X D. Optofluidic lasers with aqueous quantum dots. ACS Photonics 2, 707-713 (2015). doi: 10.1021/acsphotonics.5b00211

    CrossRef Google Scholar

    [9] Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities. Adv Opt Mater 3, 1136-1162 (2015). doi: 10.1002/adom.201500232

    CrossRef Google Scholar

    [10] He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser Photonics Rev 7, 60-82 (2013). doi: 10.1002/lpor.2013.7.issue-1

    CrossRef Google Scholar

    [11] Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors. Adv Opt Photonics 7, 168-240 (2015). doi: 10.1364/AOP.7.000168

    CrossRef Google Scholar

    [12] Righini G C, Dumeige Y, Féron P, Ferrari M, Nunzi Conti G et al. Whispering gallery mode microresonators: fundamentals and applications. La Rivista del Nuovo Cimento 34, 435-488 (2011). doi: 10.1360/132012-602

    CrossRef Google Scholar

    [13] Gohring J T, Dale P S, Fan X D. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sensors Actuators B Chem 146, 226-230 (2010). doi: 10.1016/j.snb.2010.01.067

    CrossRef Google Scholar

    [14] Lam C C, Leung P T, Young K. Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. JOSA B 9, 1585-1592 (1992). doi: 10.1364/JOSAB.9.001585

    CrossRef Google Scholar

    [15] Tang S K Y, Derda R, Quan Q M, Lončar M, Whitesides G M. Continuously tunable microdroplet-laser in a microfluidic channel. Opt Express 19, 2204-2215 (2011). doi: 10.1364/OE.19.002204

    CrossRef Google Scholar

    [16] Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L. Optical resonators with ten million finesse. Opt Express 15, 6768-6773 (2007). doi: 10.1364/OE.15.006768

    CrossRef Google Scholar

    [17] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators. Opt Lett 21, 453-455 (1996). doi: 10.1364/OL.21.000453

    CrossRef Google Scholar

    [18] Ta V D. Flexible whispering gallery mode optical microcavities for lasers and sensors (Nanyang Technological University, Singapore, 2014).

    Google Scholar

    [19] Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I et al. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80, 4057-4059 (2002). doi: 10.1063/1.1482797

    CrossRef Google Scholar

    [20] Baaske M D, Foreman M R, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 9, 933-939 (2014). doi: 10.1038/nnano.2014.180

    CrossRef Google Scholar

    [21] Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl Phys Lett 83, 1527-1529 (2003). doi: 10.1063/1.1605261

    CrossRef Google Scholar

    [22] McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Appl Phys Lett 60, 289-291 (1992). doi: 10.1063/1.106688

    CrossRef Google Scholar

    [23] Sumetsky M, Dulashko Y, Windeler R S. Super free spectral range tunable optical microbubble resonator. Opt Lett 35, 1866-1868 (2010). doi: 10.1364/OL.35.001866

    CrossRef Google Scholar

    [24] Lee W, Sun Y Z, Li H, Reddy K, Sumetsky M et al. A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Appl Phys Lett 99, 091102 (2011). doi: 10.1063/1.3629814

    CrossRef Google Scholar

    [25] Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots. Nano Lett 17, 2640-2646 (2017). doi: 10.1021/acs.nanolett.7b00447

    CrossRef Google Scholar

    [26] François A, Riesen N, Gardner K, Monro T M, Meldrum A. Lasing of whispering gallery modes in optofluidic microcapillaries. Opt Express 24, 12466 (2016). doi: 10.1364/OE.24.012466

    CrossRef Google Scholar

    [27] White I M, Oveys H, Fan X D. Liquid-core optical ring-resonator sensors. Opt Lett 31, 1319-1321 (2006). doi: 10.1364/OL.31.001319

    CrossRef Google Scholar

    [28] Sarid D. High efficiency input-output prism waveguide coupler: an analysis. Appl Opt 18, 2921-2926 (1979). doi: 10.1364/AO.18.002921

    CrossRef Google Scholar

    [29] Schiller S, Byer R L. High-resolution spectroscopy of whispering gallery modes in large dielectric spheres. Opt Lett 16, 1138-1140 (1991). doi: 10.1364/OL.16.001138

    CrossRef Google Scholar

    [30] Gorodetsky M L, Ilchenko V S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. JOSA B 16, 147-154 (1999). doi: 10.1364/JOSAB.16.000147

    CrossRef Google Scholar

    [31] Ilchenko V S, Yao X S, Maleki L. Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes. Opt Lett 24, 723-725 (1999). doi: 10.1364/OL.24.000723

    CrossRef Google Scholar

    [32] Knight J C, Cheung G, Jacques F, Birks T A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett 22, 1129-1131 (1997). doi: 10.1364/OL.22.001129

    CrossRef Google Scholar

    [33] Dumeige Y, Trebaol S, Ghişa L, Nguyên T K N, Tavernier H et al. Determination of coupling regime of high-Q amplifiers resonators and optical gain of highly selective amplifiers. JOSA B 25, 2073-2080 (2008). doi: 10.1364/JOSAB.25.002073

    CrossRef Google Scholar

    [34] Duan Z H, Wang Y J, Li G, Wang S, Yi N B et al. Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array. Laser Photonics Rev 12, 1700234 (2018). doi: 10.1002/lpor.v12.1

    CrossRef Google Scholar

    [35] Huang S H, Sheth S, Jain E, Jiang X F, Zustiak S P et al. Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation. Opt Express 26, 51-62 (2018). doi: 10.1364/OE.26.000051

    CrossRef Google Scholar

    [36] Ward J M, Yang Y, Chormaic S N. Highly sensitive temperature measurements with liquid-core microbubble resonators. IEEE Photonic Technol Lett 25, 2350-2353 (2013). doi: 10.1109/LPT.2013.2283732

    CrossRef Google Scholar

    [37] Ward J M, Yang Y, Chormaic S N. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci Rep 6, 25152 (2016). doi: 10.1038/srep25152

    CrossRef Google Scholar

    [38] He C H, Sun H J, Mo J, Yang C, Feng G Y et al. Temperature sensor based on high-Q polymethylmethacrylate optical microbubble. Laser Phys, 28, 076202 (2018). doi: 10.1088/1555-6611/aab452

    CrossRef Google Scholar

    [39] Yang Y, Lei F C, Kasumie S, Xu L H, Ward J M et al. Tunable erbium-doped microbubble laser fabricated by sol-gel coating. Opt Express, 25, 1308-1313 (2017). doi: 10.1364/OE.25.001308

    CrossRef Google Scholar

    [40] Han K, Kim J, Bahl G. High-throughput sensing of freely flowing particles with optomechanofluidics. Optica 3, 585-591 (2016). doi: 10.1364/OPTICA.3.000585

    CrossRef Google Scholar

    [41] Su J, Goldberg A F, Stoltz B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5, e16001 (2016). doi: 10.1038/lsa.2016.1

    CrossRef Google Scholar

    [42] Ghali H, Chibli H, Nadeau J L, Bianucci P, Peter Y A. Real-time detection of Staphylococcus aureus using Whispering Gallery Mode optical microdisks. Biosensors 6, 20 (2016). doi: 10.3390/bios6020020

    CrossRef Google Scholar

    [43] Swaim J D, Knittel J, Bowen W P. Detection limits in whispering gallery biosensors with plasmonic enhancement. Appl Phys Lett 99, 243109 (2011). doi: 10.1063/1.3669398

    CrossRef Google Scholar

    [44] Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C et al. Optical microresonators as single-particle absorption spectrometers. Nat Photonics 10, 788-795 (2016). doi: 10.1038/nphoton.2016.217

    CrossRef Google Scholar

    [45] Hanumegowda N M, Stica C J, Patel B C, White I, Fan X D. Refractometric sensors based on microsphere resonators. Appl Phys Lett 87, 201107 (2005). doi: 10.1063/1.2132076

    CrossRef Google Scholar

    [46] Ta V D, Chen R, Sun H D. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv Opt Mater 2, 220-225 (2014). doi: 10.1002/adom.v2.3

    CrossRef Google Scholar

    [47] Zhu H Y, White I M, Suter J D, Zourob M, Fan X D. Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal Chem 79, 930-937 (2007). doi: 10.1021/ac061279q

    CrossRef Google Scholar

    [48] Kang Y Q, François A, Riesen N, Monro T M. Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry. Sensors 18, 2987 (2018). doi: 10.3390/s18092987

    CrossRef Google Scholar

    [49] Wan L, Chandrahalim H, Zhou J, Li Z H, Chen C et al. Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing. Opt Express 26, 5800-5809 (2018). doi: 10.1364/OE.26.005800

    CrossRef Google Scholar

    [50] Krämmer S, Rastjoo S, Siegle T, Wondimu S F, Klusmann C et al. Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance. Opt Express 25, 7884-7894 (2017). doi: 10.1364/OE.25.007884

    CrossRef Google Scholar

    [51] Ren L Q, Zhang X W, Guo X X, Wang H T, Wu X. High-sensitivity optofluidic sensor based on coupled liquid-core laser. IEEE Photonics Technol Lett 29, 639-642 (2017). doi: 10.1109/LPT.2017.2647959

    CrossRef Google Scholar

    [52] Wu C W, Liu K C, Chiang C C. A novel U-shaped and microchanneled optical fiber temperature sensor fabricated by LIGA-like process. IEEE Sensors J 17, 5444-5449 (2017). doi: 10.1109/JSEN.2017.2724298

    CrossRef Google Scholar

    [53] Zeltner R, Pennetta R, Xie S R, Russell P S J. Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber. Opt Lett 43, 1479-1482 (2018). doi: 10.1364/OL.43.001479

    CrossRef Google Scholar

    [54] Nawrocka M S, Liu T, Wang X, Panepucci R R. Tunable silicon microring resonator with wide free spectral range. Appl Phys Lett 89, 071110 (2006). doi: 10.1063/1.2337162

    CrossRef Google Scholar

    [55] Zhao L Y, Wang Y, Yuan Y G, Liu Y J, Liu S Q et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor. Opt Commun 402, 181-185 (2017). doi: 10.1016/j.optcom.2017.06.008

    CrossRef Google Scholar

    [56] de Sousa-Vieira L, Ríos S, Martín I R, García-Rodríguez L, Sigaev V N et al. Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window. Opt Mater 83, 207-211 (2018). doi: 10.1016/j.optmat.2018.06.014

    CrossRef Google Scholar

    [57] Liu Z H, Liu L, Zhu Z D, Zhang Y, Wei Y et al. Whispering gallery mode temperature sensor of liquid microresonastor. Opt Lett 41, 4649-4652 (2016). doi: 10.1364/OL.41.004649

    CrossRef Google Scholar

    [58] Eryürek M, Tasdemir Z, Karadag Y, Anand S, Kilinc N et al. Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sensors Actuators B Chem 242, 1115-1120 (2017). doi: 10.1016/j.snb.2016.09.136

    CrossRef Google Scholar

    [59] Labrador-Páez L, Soler-Carracedo K, Hernández-Rodríguez M, Martín I R, Carmon T et al. Liquid whispering-gallery-mode resonator as a humidity sensor. Opt Express 25, 1165-1172 (2017). doi: 10.1364/OE.25.001165

    CrossRef Google Scholar

    [60] Huang Q L, Xu H L, Li M T, Hou Z S, Lv C et al. Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness. J Light Technol 36, 819-824 (2018). doi: 10.1109/JLT.2017.2762696

    CrossRef Google Scholar

    [61] Jiang X F, Xiao Y F, Zou C L, He L, Dong C H et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater 24, OP260-OP264 (2012). doi: 10.1002/adma.201201229

    CrossRef Google Scholar

    [62] Munnelly P, Lingnau B, Karow M M, Heindel T, Kamp M et al. On-chip optoelectronic feedback in a micropillar laser-detector assembly. Optica 4, 303-306 (2017). doi: 10.1364/OPTICA.4.000303

    CrossRef Google Scholar

    [63] Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J et al. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 8, 16631-16639 (2016). doi: 10.1039/C6NR04943E

    CrossRef Google Scholar

    [64] Chandrahalim H, Chen Q S, Said A A, Dugan M, Fan X D. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication. Lab Chip 15, 2335-2340 (2015). doi: 10.1039/C5LC00254K

    CrossRef Google Scholar

    [65] Lim J, Savchenkov A A, Dale E, Liang W, Eliyahu D et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat Commun 8, 8 (2017). doi: 10.1038/s41467-017-00021-9

    CrossRef Google Scholar

    [66] Fernandez-Bravo A, Yao K Y, Barnard E S, Borys N J, Levy E S et al. Continuous-wave upconverting nanoparticle microlasers. Nat Nanotechnol 13, 572-577 (2018). doi: 10.1038/s41565-018-0161-8

    CrossRef Google Scholar

    [67] Moiseev E, Kryzhanovskaya N, Maximov M, Zubov F, Nadtochiy A et al. Highly efficient injection microdisk lasers based on quantum well-dots. Opt Lett 43, 4554-4557 (2018). doi: 10.1364/OL.43.004554

    CrossRef Google Scholar

    [68] Zhu S, Shi L, Xiao B W, Zhang X L, Fan X D. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics 5, 3794-3800 (2018). doi: 10.1021/acsphotonics.8b00838

    CrossRef Google Scholar

    [69] Kim Y, Lee S Y, Ryu J W, Kim I, Han J H et al. Designing whispering gallery modes via transformation optics. Nat Photonics 10, 647-652 (2016). doi: 10.1038/nphoton.2016.184

    CrossRef Google Scholar

    [70] Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S et al. Toward on-chip unidirectional and single-mode polymer microlaser. J Light Technol 35, 2331-2336 (2017). doi: 10.1109/JLT.2017.2671402

    CrossRef Google Scholar

    [71] Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat Commun 6, 6193 (2015). doi: 10.1038/ncomms7193

    CrossRef Google Scholar

    [72] Förtsch M, Fürst J U, Wittmann C, Strekalov D, Aiello A et al. A versatile source of single photons for quantum information processing. Nat Commun 4, 1818 (2013). doi: 10.1038/ncomms2838

    CrossRef Google Scholar

    [73] Pfeifle J, Coillet A, Henriet R, Saleh K, Schindler P et al. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys Rev Lett 114, 093902 (2015). doi: 10.1103/PhysRevLett.114.093902

    CrossRef Google Scholar

    [74] Monifi F, Özdemir Ş K, Yang L. Tunable add-drop filter using an active whispering gallery mode microcavity. Appl Phys Lett 103, 181103 (2013). doi: 10.1063/1.4827637

    CrossRef Google Scholar

    [75] O'Shea D, Junge C, Pöllinger M, Vogler A, Rauschenbeutel A. All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators. Appl Phys B 105, 129-148 (2011). doi: 10.1007/s00340-011-4714-x

    CrossRef Google Scholar

    [76] Jiang X F, Zou C L, Wang L, Gong Q H, Xiao Y F. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev 10, 40-61 (2016). doi: 10.1002/lpor.201500163

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint