Xie X Z, Zhou C X, Wei X, Hu W, Ren Q L. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019). doi: 10.29026/oea.2019.180017
Citation: Xie X Z, Zhou C X, Wei X, Hu W, Ren Q L. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019). doi: 10.29026/oea.2019.180017

Review Open Access

Laser machining of transparent brittle materials: from machining strategies to applications

More Information
  • Transparent brittle materials such as glass and sapphire are widely concerned and applied in consumer electronics, optoelectronic devices, etc. due to their excellent physical and chemical stability and good transparency. Growing research attention has been paid to developing novel methods for high-precision and high-quality machining of transparent brittle materials in the past few decades. Among the various techniques, laser machining has been proved to be an effective and flexible way to process all kinds of transparent brittle materials. In this review, a series of laser machining methods, e.g. laser full cutting, laser scribing, laser stealth dicing, laser filament, laser induced backside dry etching (LIBDE), and laser induced backside wet etching (LIBWE) are summarized. Additionally, applications of these techniques in micromachining, drilling and cutting, and patterning are introduced in detail. Current challenges and future prospects in this field are also discussed.
  • 加载中
  • [1] Matsumaru K, Takata A, Ishizaki K. Advanced thin dicing blade for sapphire substrate. Sci Technol Adv Mater 6, 120-122 (2005). doi: 10.1016/j.stam.2004.11.002

    CrossRef Google Scholar

    [2] Rao R, Bradby J E, Williams J S. Patterning of silicon by indentation and chemical etching. Appl Phys Lett 91, 123113 (2007). doi: 10.1063/1.2779111

    CrossRef Google Scholar

    [3] Prakash E S, Sadashivappa K, Joseph V, Singaperumal M. Nonconventional cutting of plate glass using hot air jet: experimental studies. Mechatronics 11, 595-615 (2001). doi: 10.1016/S0957-4158(00)00033-7

    CrossRef Google Scholar

    [4] Yuan F, Johnson J A, Allred D D, Todd R H. Waterjet cutting of cross-linked glass. J Vac Sci Technol A 13, 136-139 (1995). doi: 10.1116/1.579427

    CrossRef Google Scholar

    [5] Clower W, Kaajakari V, Wilson C G. Laser-assisted wet etching of quartz crystal resonators. J Microelectromechan Syst 27, 22-24 (2018). doi: 10.1109/JMEMS.2017.2785620

    CrossRef Google Scholar

    [6] Udrea M V, Alacakir A, Esendemir A, Kusdemir O, Pervan O et al. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proc SPIE 4068, 657-662 (2000) doi: 10.1117/12.378741

    CrossRef Google Scholar

    [7] Garibotti, Domenick J. Dicing of micro-semiconductors: US3112850. 1963.

    Google Scholar

    [8] Yadav A, Kbashi H, Kolpakov S, Gordon N, Zhou K M et al. Stealth dicing of sapphire wafers with near infra-red femtosecond pulses. Appl Phys A 123, 369 (2017). doi: 10.1007/s00339-017-0927-0

    CrossRef Google Scholar

    [9] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep 441, 47-189 (2007). doi: 10.1016/j.physrep.2006.12.005

    CrossRef Google Scholar

    [10] Banks D P, Kaur K S, Eason R W. Etching and forward transfer of fused silica in solid-phase by femtosecond laser-induced solid etching (LISE). Appl Surf Sci 255, 8343-8351 (2009). doi: 10.1016/j.apsusc.2009.05.060

    CrossRef Google Scholar

    [11] Lin G, Tan D Z, Luo F F, Chen D P, Zhao Q Z et al. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid. J Alloys Compd 507, L43-L46 (2010). doi: 10.1016/j.jallcom.2010.08.014

    CrossRef Google Scholar

    [12] Zimmer K, Böhme R, Rauschenbach B. Laser etching of fused silica using an adsorbed toluene layer. Appl Phys A 79, 1883-1885 (2004). doi: 10.1007/s00339-004-2961-y

    CrossRef Google Scholar

    [13] Dausinger F, Hugel H, Konov V I. Micromachining with ultrashort laser pulses: from basic understanding to technical applications. Proc SPIE 5147, 106-115 (2003).

    Google Scholar

    [14] Foehl C, Breitling D, Jasper K, Radtke J, Dausinger. Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers. Proc SPIE 4426, 104-107 (2002) doi: 10.1117/12.456897

    CrossRef Google Scholar

    [15] Wang Q Y. Femtosecond Laser Applications in Advanced Technologies (National Defense Industry Press, Beijing, China 2015).

    Google Scholar

    [16] Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109-115 (1996). doi: 10.1007/BF01567637

    CrossRef Google Scholar

    [17] Ahmed F, Lee M S, Sekita H, Sumiyoshi T, Kamata M. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl Phys A 93, 189-192 (2008).

    Google Scholar

    [18] Tsai C H, Liou C S. Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng 125, 519-528 (2003). doi: 10.1115/1.1559163

    CrossRef Google Scholar

    [19] Ye K D, An C W, Hong M H, Lu Y F. Wafer dicing by laser-induced thermal shock process. Proc SPIE 4557, 442940 (2001).

    Google Scholar

    [20] Lan B, Hong M H, Ye K D, Wang Z B, Cheng S X et al. Laser precision engineering of glass substrates. Jpn J Appl Phys43, 7102-7106 (2004). doi: 10.1143/JJAP.43.7102

    CrossRef Google Scholar

    [21] Yamamoto K, Hasaka N, Morita H, Ohmura E. Thermal stress analysis on laser cross scribe of glass. J Laser Appl 22, 937-943 (2010).

    Google Scholar

    [22] Hu X B, Hao Q, Guo Z R, Zeng H P. Dicing of sapphire wafer with all-fiber picosecond laser. Chin J Lasers 44, 0102016 (2017). doi: 10.3788/CJL

    CrossRef Google Scholar

    [23] Zhuang H W. Research on multifocal picosecond laser stealth dicing btittle materials (Jiangsu University, Zhenjiang, 2017).

    Google Scholar

    [24] Tan B, Venkatakrishnan K. Dual-focus laser micro-machining. J Mod Opt 52, 2603-2611 (2005). doi: 10.1080/09500340500227745

    CrossRef Google Scholar

    [25] Li Z G. Multi-focal laser processing system: CN103111757A. 2013.

    Google Scholar

    [26] Xie H Z, Zhang Y Y, Yang H, Li J, Yi X Y et al. Multi-focus femtosecond laser scribing method applied to separation of light emitting diode (LED) device: CN102886609A. 2013.

    Google Scholar

    [27] Albermann G, Moeller S, Rohleder T, et al. Plasma etching and stealth dicing laser process: US20160071770, 2016.

    Google Scholar

    [28] Lopez J, Mishchik K, Chassagne B, Javaux-Leger C, Hönninger C et al. Glass cutting using ultrashort pulsed Bessel beams. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics Conference (ResearchGate, 2015); https://www.researchgate.net/publication/284617626

    Google Scholar

    [29] Alexeev A M, Kryzhanovskiy V I, Khait O V. Method for cutting non-metallic materials and device for carrying out said method: EP1506946A2. 2005.

    Google Scholar

    [30] Bovatsek J, Arai A Y, Yoshino F. Transparent material processing with an ultrashort pulse laser: US8389891, 2013.

    Google Scholar

    [31] Seong C Y, Kim H U, Kim N S, Kim B C. Comparison of laser glass cutting processes using ps and fs lasers. In International Congress on Applications of Laser & Electro-Optics Conference (ResearchGate, 2012); https://www.researchgate.net/publication/292854138.

    Google Scholar

    [32] Ji L F, Amina, Yan T Y, Wang W H, Wang T R et al. Research progress of ultrafast laser industrial applications based on filamentation. Opto Electron Eng 44, 851-861 (2017).

    Google Scholar

    [33] Kovachev L M, Georgieva D A. The long range filament stability: balance between non-paraxial diffraction and third-order nonlinearity.Proc SPIE 8770, 87701G (2013). doi: 10.1117/12.2013663

    CrossRef Google Scholar

    [34] Daigle J F, Kosareva O, Panov N, Bégin M, Lessard F et al. A simple method to significantly increase filaments' length and ionization density. Appl Phys B 94, 249-257 (2009). doi: 10.1007/s00340-008-3270-5

    CrossRef Google Scholar

    [35] Braun A, Korn G, Liu X, Du D, Squier J et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett20, 73-75 (1995). doi: 10.1364/OL.20.000073

    CrossRef Google Scholar

    [36] Brodeur A, Chien C Y, Ilkov F A, Chin S L, Kosareva O G et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt Lett 22, 304-306 (1997). doi: 10.1364/OL.22.000304

    CrossRef Google Scholar

    [37] Mlejnek M, Wright E M, Moloney J V. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt Lett23, 382-384 (1998). doi: 10.1364/OL.23.000382

    CrossRef Google Scholar

    [38] Tan D Z, Sharafudeen K N, Yue Y Z, Qiu J R. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci 76, 154-228 (2016). doi: 10.1016/j.pmatsci.2015.09.002

    CrossRef Google Scholar

    [39] Song Z M, Zhang Z G, Nakajima T. Transverse-mode dependence of femtosecond filamentation. Opt Express 17, 12217-12229 (2009). doi: 10.1364/OE.17.012217

    CrossRef Google Scholar

    [40] Courvoisier F, Zhang J, Bhuyan M K, Jacquot M, Dudley J M. Applications of femtosecond Bessel beams to laser ablation. Appl Phys A 112, 29-34 (2013). doi: 10.1007/s00339-012-7201-2

    CrossRef Google Scholar

    [41] Sugioka K, Obata K, Hong M H, Wu D J, Wong L L et al. Hybrid laser processing for microfabrication of glass. Appl Phys A 77, 251-257 (2003).

    Google Scholar

    [42] Sugioka K, Obata K, Midorikawa K, Hong M H, Wu D J et al. Advanced materials processing based on interaction of laser beam and a medium. J Photochem Photobiol A 158, 171-178 (2003). doi: 10.1016/S1010-6030(03)00031-5

    CrossRef Google Scholar

    [43] Hong M H, Sugioka K, Lu Y F, Midorikawa K, Chong T C. Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci 186, 556-561 (2002). doi: 10.1016/S0169-4332(01)00638-9

    CrossRef Google Scholar

    [44] Lu X Z, Jiang F, Lei T P, Zhou R, Zhang C T et al. Laser-induced-plasma-assisted ablation and metallization on C-plane single crystal sapphire (c-Al2O3). Micromachines 8, 300 (2017). doi: 10.3390/mi8100300

    CrossRef Google Scholar

    [45] Stone A, Sakakura M, Shimotsuma Y, Miura K, Hirao K et al. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater Des 146, 228-238 (2018). doi: 10.1016/j.matdes.2018.03.016

    CrossRef Google Scholar

    [46] Pan C F, Chen K Y, Liu B, Ren L, Wang J R et al. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J Mater Process Technol 240, 314-323 (2017). doi: 10.1016/j.jmatprotec.2016.10.011

    CrossRef Google Scholar

    [47] Gao H, Hu Y W, Xuan Y, Li J, Yang Y L et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science 346, 1352-1356 (2014). doi: 10.1126/science.1260139

    CrossRef Google Scholar

    [48] He C, Liu F R, Wang M, Yuan J W, Chen J M. Laser induced backside wet and dry etching of solar glass by short pulse ytterbium fiber laser irradiation. J Laser Appl 24, 022005 (2012). doi: 10.2351/1.3701047

    CrossRef Google Scholar

    [49] Zelenska K S, Zelensky S E, Poperenko L V, Kanev K, Mizeikis V et al. Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles. Opt Laser Technol 76, 96-100 (2016). doi: 10.1016/j.optlastec.2015.07.011

    CrossRef Google Scholar

    [50] Jiang W, Xie X Z, Wei X, Hu W, Ren Q L et al. High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation.Opt Mater Express 7, 1565-1574 (2017). doi: 10.1364/OME.7.001565

    CrossRef Google Scholar

    [51] Böhme R, Hirsch D, Zimmer K. Laser etching of transparent materials at a backside surface adsorbed layer. Appl Surf Sci 252, 4763-4767 (2006). doi: 10.1016/j.apsusc.2005.06.058

    CrossRef Google Scholar

    [52] Böhme R, Zimmer K. The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl Surf Sci 247, 256-261 (2005). doi: 10.1016/j.apsusc.2005.01.058

    CrossRef Google Scholar

    [53] Kopitkovas G, Lippert T, Venturini J, David C, Wokaun A. Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements. J Phys 59, 526-532 (2014).

    Google Scholar

    [54] Vass C, Hopp B, Smausz T, Ignácz F. Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica. Thin Solid Films 453-454, 121-126 (2004). doi: 10.1016/j.tsf.2003.11.081

    CrossRef Google Scholar

    [55] Zimmer K. Analytical solution of the laser-induced temperature distribution across internal material interfaces. Int J Heat Mass Transfer 52, 497-503 (2009). doi: 10.1016/j.ijheatmasstransfer.2008.03.034

    CrossRef Google Scholar

    [56] Zimmer K, Ehrhardt M, Böhme R. Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. J Appl Phys 107, 034908 (2010). doi: 10.1063/1.3276204

    CrossRef Google Scholar

    [57] Xie X Z, Huang X D, Jiang W, Wei X, Hu W et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions. Opt Laser Technol 89, 59-68 (2017).

    Google Scholar

    [58] Huang X D. Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire (Guangdong University of Technology, Guangzhou, 2015).

    Google Scholar

    [59] Sato T, Kurosaki R, Narazaki A, Kawaguchi Y, Niino H. Flexible 3D deep microstructures of silica glass by laser-induced backside wet etching. Appl Phys A 101, 319-323 (2010). doi: 10.1007/s00339-010-5790-1

    CrossRef Google Scholar

    [60] Mitsuishi M, Sugita N, Kono I, Warisawa S. Analysis of laser micromachining in silica glass with an absorbent slurry. CIRP Ann 57, 217-222 (2008). doi: 10.1016/j.cirp.2008.03.006

    CrossRef Google Scholar

    [61] Huang Z Q, Hong M H, Do T B M, Lin Q Y. Laser etching of glass substrates by 1064 nm laser irradiation. Appl Phys A 93, 159-163 (2008).

    Google Scholar

    [62] Yang Y X, Wang Q X, Keat T S. Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason Sonochem 20, 1098-1103 (2013). doi: 10.1016/j.ultsonch.2013.01.010

    CrossRef Google Scholar

    [63] Chen Y H, I L. Dynamics of impacting a bubble by another pulsed-laser-induced bubble: jetting, fragmentation, and entanglement. Phys Rev E 77, 026304 (2008). doi: 10.1103/PhysRevE.77.026304

    CrossRef Google Scholar

    [64] Hu M F. Study on laser induced cavitation bubbles and flow field distribution during laser-induced backside wet etching sapphire substrates (Guangdong University of Technology, Guangzhou, 2014).

    Google Scholar

    [65] Xie X Z, Yuan X R, Chen W F, Wei X, Hu W et al. New development and applications of laser-induced cavitation bubbles. Laser Optoelectron Prog 50, 080017 (2013). doi: 10.3788/LOP

    CrossRef Google Scholar

    [66] Xie X Z, Hu M F, Chen W F, Wei X, Hu W et al. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J Laser Micro Nanoeng 8, 259-265 (2013).

    Google Scholar

    [67] Long J Y, Zhou C X, Cao Z Q, Xie X Z, Hu W. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Opt Laser Technol 109, 61-70 (2019). doi: 10.1016/j.optlastec.2018.07.066

    CrossRef Google Scholar

    [68] Lee T, Jang D, Ahn D, Kim D. Effect of liquid environment on laser-induced backside wet etching of fused silica. J Appl Phys 107, 033112 (2010). doi: 10.1063/1.3294615

    CrossRef Google Scholar

    [69] Liu X M, Long Z, He J, Liu X H, Hou Y F et al. Temperature effect on the impact of a liquid-jet against a rigid boundary. Optik 124, 1542-1546 (2013). doi: 10.1016/j.ijleo.2012.04.020

    CrossRef Google Scholar

    [70] Soliman W, Nakano T, Takada N, Sasaki K. Modification of Rayleigh-Plesset theory for reproducing dynamics of cavitation bubbles in liquid-phase laser ablation. Jpn J Appl Phys 49, 116202 (2010). doi: 10.1143/JJAP.49.116202

    CrossRef Google Scholar

    [71] Cao Z Q, Xie X Z, Chen W F, Wei X, Hu W et al. Research progress of pressure detection and applications in liquid-assisted laser machining. Opto-Electron Eng 44, 381-392 (2017).

    Google Scholar

    [72] Cao Z Q. Study on the detection of cavitation and pressure in the process of laser induced backside wet etching of sapphire substrates. (Guangdong University of Technology, Guangzhou, 2018).

    Google Scholar

    [73] Qiao L L, He F, Wang C, Cheng Y, Sugioka K et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl Phys A 102, 179-183 (2011). doi: 10.1007/s00339-010-6096-z

    CrossRef Google Scholar

    [74] Liu J, Zhang Z, Lu Z, Xiao G, Sun F et al. Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses. Appl Phys B 86, 151-154 (2007).

    Google Scholar

    [75] Queste S, Salut R, Clatot S, Rauch J Y, Khan Malek C G. Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 16, 1485-1493 (2010). doi: 10.1007/s00542-010-1020-1

    CrossRef Google Scholar

    [76] Ji L F, Hu Y, Li J, Wang W H, Jiang Y J. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser. Appl Phys A 121, 1163-1169 (2015). doi: 10.1007/s00339-015-9482-8

    CrossRef Google Scholar

    [77] Gao X Y. Study on the development of working solution and processing mechanism of laser wet etching sapphire Substrat (Guangdong University of Technology, Guangzhou, 2014).

    Google Scholar

    [78] Jiang W. Study on the mechanism of micro Nano suspended particle assisted laser-induced backside wet dicing of sapphire substrate. (Guangdong University of Technology, Guangzhou, 2017).

    Google Scholar

    [79] Shen J J, Luo G X, Pan Y, Liu Z J, Jiang Z H. Research on glass cutting process base on 532 nm wavelength nanosecond laser. Appl Laser 35, 493-499 (2015).

    Google Scholar

    [80] Rolo A, Coelho J, Pires M. Laser glass marking: influence of pulse characteristics. Proc SPIE 5958, 59583D (2005). doi: 10.1117/12.628989

    CrossRef Google Scholar

    [81] Nakazumi T, Sato T, Narazaki A, Niino H. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference. J Micromechan Microeng 26, 095015 (2016). doi: 10.1088/0960-1317/26/9/095015

    CrossRef Google Scholar

    [82] Dumont T, Lippert T, Wokaun A, Leyvraz P. Laser writing of 2D data matrices in glass. Thin Solid Films 453-454, 42-45 (2004). doi: 10.1016/j.tsf.2003.11.148

    CrossRef Google Scholar

    [83] Zhang X M, Ma J Q, Ding Y F. Analysis of marking glass with different process parameters based on super-pulsed laser. Adv Mater Res 602-604, 929-933 (2013).

    Google Scholar

    [84] Sato T, Narazaki A, Niino H. Fabrication of micropits by LIBWE for laser marking of glass materials. J Laser Micro/Nanoeng 12, 248-253 (2017).

    Google Scholar

    [85] Ding X, Yasui Y, Kawaguchi Y, Niino H, Yabe A. Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl Phys A 75, 437-440 (2002). doi: 10.1007/s003390101131

    CrossRef Google Scholar

    [86] Ding X, Kawaguchi Y, Niino H, Yabe A. Laser-induced high-quality etching of fused silica using a novel aqueous medium.Appl Phys A 75, 641-645 (2002).

    Google Scholar

    [87] Ding X M, Sato T, Kawaguchi Y, Niino H. Laser-induced backside wet etching of sapphire. Jpn J Appl Phys 42, 176-178 (2003). doi: 10.1143/JJAP.42.L176

    CrossRef Google Scholar

    [88] Wang J, Niino H, Yabe A. Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl Phys A 69, S271-S273 (1999). doi: 10.1007/s003390051398

    CrossRef Google Scholar

    [89] Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T et al. Laser ablation of toluene liquid for surface micro-structuring of silica glass. Appl Surf Sci 252, 4387-4391 (2006). doi: 10.1016/j.apsusc.2005.07.084

    CrossRef Google Scholar

    [90] Sohn I B, Choi H K, Yoo D, Noh Y C, Sung J H et al. Synchronized femtosecond laser pulse switching system based nano-patterning technology. Opt Mater 69, 295-302 (2017). doi: 10.1016/j.optmat.2017.04.055

    CrossRef Google Scholar

    [91] Bekesi J, Meinertz J, Simon P, Ihlemann J. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation. Appl Phys A 110, 17-21 (2013). doi: 10.1007/s00339-012-7313-8

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint