Citation: | Xie X Z, Zhou C X, Wei X, Hu W, Ren Q L. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019). doi: 10.29026/oea.2019.180017 |
[1] | Matsumaru K, Takata A, Ishizaki K. Advanced thin dicing blade for sapphire substrate. Sci Technol Adv Mater 6, 120-122 (2005). doi: 10.1016/j.stam.2004.11.002 |
[2] | Rao R, Bradby J E, Williams J S. Patterning of silicon by indentation and chemical etching. Appl Phys Lett 91, 123113 (2007). doi: 10.1063/1.2779111 |
[3] | Prakash E S, Sadashivappa K, Joseph V, Singaperumal M. Nonconventional cutting of plate glass using hot air jet: experimental studies. Mechatronics 11, 595-615 (2001). doi: 10.1016/S0957-4158(00)00033-7 |
[4] | Yuan F, Johnson J A, Allred D D, Todd R H. Waterjet cutting of cross-linked glass. J Vac Sci Technol A 13, 136-139 (1995). doi: 10.1116/1.579427 |
[5] | Clower W, Kaajakari V, Wilson C G. Laser-assisted wet etching of quartz crystal resonators. J Microelectromechan Syst 27, 22-24 (2018). doi: 10.1109/JMEMS.2017.2785620 |
[6] | Udrea M V, Alacakir A, Esendemir A, Kusdemir O, Pervan O et al. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proc SPIE 4068, 657-662 (2000) doi: 10.1117/12.378741 |
[7] | Garibotti, Domenick J. Dicing of micro-semiconductors: US3112850. 1963. |
[8] | Yadav A, Kbashi H, Kolpakov S, Gordon N, Zhou K M et al. Stealth dicing of sapphire wafers with near infra-red femtosecond pulses. Appl Phys A 123, 369 (2017). doi: 10.1007/s00339-017-0927-0 |
[9] | Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep 441, 47-189 (2007). doi: 10.1016/j.physrep.2006.12.005 |
[10] | Banks D P, Kaur K S, Eason R W. Etching and forward transfer of fused silica in solid-phase by femtosecond laser-induced solid etching (LISE). Appl Surf Sci 255, 8343-8351 (2009). doi: 10.1016/j.apsusc.2009.05.060 |
[11] | Lin G, Tan D Z, Luo F F, Chen D P, Zhao Q Z et al. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid. J Alloys Compd 507, L43-L46 (2010). doi: 10.1016/j.jallcom.2010.08.014 |
[12] | Zimmer K, Böhme R, Rauschenbach B. Laser etching of fused silica using an adsorbed toluene layer. Appl Phys A 79, 1883-1885 (2004). doi: 10.1007/s00339-004-2961-y |
[13] | Dausinger F, Hugel H, Konov V I. Micromachining with ultrashort laser pulses: from basic understanding to technical applications. Proc SPIE 5147, 106-115 (2003). |
[14] | Foehl C, Breitling D, Jasper K, Radtke J, Dausinger. Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers. Proc SPIE 4426, 104-107 (2002) doi: 10.1117/12.456897 |
[15] | Wang Q Y. Femtosecond Laser Applications in Advanced Technologies (National Defense Industry Press, Beijing, China 2015). |
[16] | Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109-115 (1996). doi: 10.1007/BF01567637 |
[17] | Ahmed F, Lee M S, Sekita H, Sumiyoshi T, Kamata M. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl Phys A 93, 189-192 (2008). |
[18] | Tsai C H, Liou C S. Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng 125, 519-528 (2003). doi: 10.1115/1.1559163 |
[19] | Ye K D, An C W, Hong M H, Lu Y F. Wafer dicing by laser-induced thermal shock process. Proc SPIE 4557, 442940 (2001). |
[20] | Lan B, Hong M H, Ye K D, Wang Z B, Cheng S X et al. Laser precision engineering of glass substrates. Jpn J Appl Phys43, 7102-7106 (2004). doi: 10.1143/JJAP.43.7102 |
[21] | Yamamoto K, Hasaka N, Morita H, Ohmura E. Thermal stress analysis on laser cross scribe of glass. J Laser Appl 22, 937-943 (2010). |
[22] | Hu X B, Hao Q, Guo Z R, Zeng H P. Dicing of sapphire wafer with all-fiber picosecond laser. Chin J Lasers 44, 0102016 (2017). doi: 10.3788/CJL |
[23] | Zhuang H W. Research on multifocal picosecond laser stealth dicing btittle materials (Jiangsu University, Zhenjiang, 2017). |
[24] | Tan B, Venkatakrishnan K. Dual-focus laser micro-machining. J Mod Opt 52, 2603-2611 (2005). doi: 10.1080/09500340500227745 |
[25] | Li Z G. Multi-focal laser processing system: CN103111757A. 2013. |
[26] | Xie H Z, Zhang Y Y, Yang H, Li J, Yi X Y et al. Multi-focus femtosecond laser scribing method applied to separation of light emitting diode (LED) device: CN102886609A. 2013. |
[27] | Albermann G, Moeller S, Rohleder T, et al. Plasma etching and stealth dicing laser process: US20160071770, 2016. |
[28] | Lopez J, Mishchik K, Chassagne B, Javaux-Leger C, Hönninger C et al. Glass cutting using ultrashort pulsed Bessel beams. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics Conference (ResearchGate, 2015); https://www.researchgate.net/publication/284617626 |
[29] | Alexeev A M, Kryzhanovskiy V I, Khait O V. Method for cutting non-metallic materials and device for carrying out said method: EP1506946A2. 2005. |
[30] | Bovatsek J, Arai A Y, Yoshino F. Transparent material processing with an ultrashort pulse laser: US8389891, 2013. |
[31] | Seong C Y, Kim H U, Kim N S, Kim B C. Comparison of laser glass cutting processes using ps and fs lasers. In International Congress on Applications of Laser & Electro-Optics Conference (ResearchGate, 2012); https://www.researchgate.net/publication/292854138. |
[32] | Ji L F, Amina, Yan T Y, Wang W H, Wang T R et al. Research progress of ultrafast laser industrial applications based on filamentation. Opto Electron Eng 44, 851-861 (2017). |
[33] | Kovachev L M, Georgieva D A. The long range filament stability: balance between non-paraxial diffraction and third-order nonlinearity.Proc SPIE 8770, 87701G (2013). doi: 10.1117/12.2013663 |
[34] | Daigle J F, Kosareva O, Panov N, Bégin M, Lessard F et al. A simple method to significantly increase filaments' length and ionization density. Appl Phys B 94, 249-257 (2009). doi: 10.1007/s00340-008-3270-5 |
[35] | Braun A, Korn G, Liu X, Du D, Squier J et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett20, 73-75 (1995). doi: 10.1364/OL.20.000073 |
[36] | Brodeur A, Chien C Y, Ilkov F A, Chin S L, Kosareva O G et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt Lett 22, 304-306 (1997). doi: 10.1364/OL.22.000304 |
[37] | Mlejnek M, Wright E M, Moloney J V. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt Lett23, 382-384 (1998). doi: 10.1364/OL.23.000382 |
[38] | Tan D Z, Sharafudeen K N, Yue Y Z, Qiu J R. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci 76, 154-228 (2016). doi: 10.1016/j.pmatsci.2015.09.002 |
[39] | Song Z M, Zhang Z G, Nakajima T. Transverse-mode dependence of femtosecond filamentation. Opt Express 17, 12217-12229 (2009). doi: 10.1364/OE.17.012217 |
[40] | Courvoisier F, Zhang J, Bhuyan M K, Jacquot M, Dudley J M. Applications of femtosecond Bessel beams to laser ablation. Appl Phys A 112, 29-34 (2013). doi: 10.1007/s00339-012-7201-2 |
[41] | Sugioka K, Obata K, Hong M H, Wu D J, Wong L L et al. Hybrid laser processing for microfabrication of glass. Appl Phys A 77, 251-257 (2003). |
[42] | Sugioka K, Obata K, Midorikawa K, Hong M H, Wu D J et al. Advanced materials processing based on interaction of laser beam and a medium. J Photochem Photobiol A 158, 171-178 (2003). doi: 10.1016/S1010-6030(03)00031-5 |
[43] | Hong M H, Sugioka K, Lu Y F, Midorikawa K, Chong T C. Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci 186, 556-561 (2002). doi: 10.1016/S0169-4332(01)00638-9 |
[44] | Lu X Z, Jiang F, Lei T P, Zhou R, Zhang C T et al. Laser-induced-plasma-assisted ablation and metallization on C-plane single crystal sapphire (c-Al2O3). Micromachines 8, 300 (2017). doi: 10.3390/mi8100300 |
[45] | Stone A, Sakakura M, Shimotsuma Y, Miura K, Hirao K et al. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater Des 146, 228-238 (2018). doi: 10.1016/j.matdes.2018.03.016 |
[46] | Pan C F, Chen K Y, Liu B, Ren L, Wang J R et al. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J Mater Process Technol 240, 314-323 (2017). doi: 10.1016/j.jmatprotec.2016.10.011 |
[47] | Gao H, Hu Y W, Xuan Y, Li J, Yang Y L et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science 346, 1352-1356 (2014). doi: 10.1126/science.1260139 |
[48] | He C, Liu F R, Wang M, Yuan J W, Chen J M. Laser induced backside wet and dry etching of solar glass by short pulse ytterbium fiber laser irradiation. J Laser Appl 24, 022005 (2012). doi: 10.2351/1.3701047 |
[49] | Zelenska K S, Zelensky S E, Poperenko L V, Kanev K, Mizeikis V et al. Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles. Opt Laser Technol 76, 96-100 (2016). doi: 10.1016/j.optlastec.2015.07.011 |
[50] | Jiang W, Xie X Z, Wei X, Hu W, Ren Q L et al. High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation.Opt Mater Express 7, 1565-1574 (2017). doi: 10.1364/OME.7.001565 |
[51] | Böhme R, Hirsch D, Zimmer K. Laser etching of transparent materials at a backside surface adsorbed layer. Appl Surf Sci 252, 4763-4767 (2006). doi: 10.1016/j.apsusc.2005.06.058 |
[52] | Böhme R, Zimmer K. The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl Surf Sci 247, 256-261 (2005). doi: 10.1016/j.apsusc.2005.01.058 |
[53] | Kopitkovas G, Lippert T, Venturini J, David C, Wokaun A. Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements. J Phys 59, 526-532 (2014). |
[54] | Vass C, Hopp B, Smausz T, Ignácz F. Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica. Thin Solid Films 453-454, 121-126 (2004). doi: 10.1016/j.tsf.2003.11.081 |
[55] | Zimmer K. Analytical solution of the laser-induced temperature distribution across internal material interfaces. Int J Heat Mass Transfer 52, 497-503 (2009). doi: 10.1016/j.ijheatmasstransfer.2008.03.034 |
[56] | Zimmer K, Ehrhardt M, Böhme R. Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. J Appl Phys 107, 034908 (2010). doi: 10.1063/1.3276204 |
[57] | Xie X Z, Huang X D, Jiang W, Wei X, Hu W et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions. Opt Laser Technol 89, 59-68 (2017). |
[58] | Huang X D. Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire (Guangdong University of Technology, Guangzhou, 2015). |
[59] | Sato T, Kurosaki R, Narazaki A, Kawaguchi Y, Niino H. Flexible 3D deep microstructures of silica glass by laser-induced backside wet etching. Appl Phys A 101, 319-323 (2010). doi: 10.1007/s00339-010-5790-1 |
[60] | Mitsuishi M, Sugita N, Kono I, Warisawa S. Analysis of laser micromachining in silica glass with an absorbent slurry. CIRP Ann 57, 217-222 (2008). doi: 10.1016/j.cirp.2008.03.006 |
[61] | Huang Z Q, Hong M H, Do T B M, Lin Q Y. Laser etching of glass substrates by 1064 nm laser irradiation. Appl Phys A 93, 159-163 (2008). |
[62] | Yang Y X, Wang Q X, Keat T S. Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason Sonochem 20, 1098-1103 (2013). doi: 10.1016/j.ultsonch.2013.01.010 |
[63] | Chen Y H, I L. Dynamics of impacting a bubble by another pulsed-laser-induced bubble: jetting, fragmentation, and entanglement. Phys Rev E 77, 026304 (2008). doi: 10.1103/PhysRevE.77.026304 |
[64] | Hu M F. Study on laser induced cavitation bubbles and flow field distribution during laser-induced backside wet etching sapphire substrates (Guangdong University of Technology, Guangzhou, 2014). |
[65] | Xie X Z, Yuan X R, Chen W F, Wei X, Hu W et al. New development and applications of laser-induced cavitation bubbles. Laser Optoelectron Prog 50, 080017 (2013). doi: 10.3788/LOP |
[66] | Xie X Z, Hu M F, Chen W F, Wei X, Hu W et al. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J Laser Micro Nanoeng 8, 259-265 (2013). |
[67] | Long J Y, Zhou C X, Cao Z Q, Xie X Z, Hu W. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Opt Laser Technol 109, 61-70 (2019). doi: 10.1016/j.optlastec.2018.07.066 |
[68] | Lee T, Jang D, Ahn D, Kim D. Effect of liquid environment on laser-induced backside wet etching of fused silica. J Appl Phys 107, 033112 (2010). doi: 10.1063/1.3294615 |
[69] | Liu X M, Long Z, He J, Liu X H, Hou Y F et al. Temperature effect on the impact of a liquid-jet against a rigid boundary. Optik 124, 1542-1546 (2013). doi: 10.1016/j.ijleo.2012.04.020 |
[70] | Soliman W, Nakano T, Takada N, Sasaki K. Modification of Rayleigh-Plesset theory for reproducing dynamics of cavitation bubbles in liquid-phase laser ablation. Jpn J Appl Phys 49, 116202 (2010). doi: 10.1143/JJAP.49.116202 |
[71] | Cao Z Q, Xie X Z, Chen W F, Wei X, Hu W et al. Research progress of pressure detection and applications in liquid-assisted laser machining. Opto-Electron Eng 44, 381-392 (2017). |
[72] | Cao Z Q. Study on the detection of cavitation and pressure in the process of laser induced backside wet etching of sapphire substrates. (Guangdong University of Technology, Guangzhou, 2018). |
[73] | Qiao L L, He F, Wang C, Cheng Y, Sugioka K et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl Phys A 102, 179-183 (2011). doi: 10.1007/s00339-010-6096-z |
[74] | Liu J, Zhang Z, Lu Z, Xiao G, Sun F et al. Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses. Appl Phys B 86, 151-154 (2007). |
[75] | Queste S, Salut R, Clatot S, Rauch J Y, Khan Malek C G. Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 16, 1485-1493 (2010). doi: 10.1007/s00542-010-1020-1 |
[76] | Ji L F, Hu Y, Li J, Wang W H, Jiang Y J. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser. Appl Phys A 121, 1163-1169 (2015). doi: 10.1007/s00339-015-9482-8 |
[77] | Gao X Y. Study on the development of working solution and processing mechanism of laser wet etching sapphire Substrat (Guangdong University of Technology, Guangzhou, 2014). |
[78] | Jiang W. Study on the mechanism of micro Nano suspended particle assisted laser-induced backside wet dicing of sapphire substrate. (Guangdong University of Technology, Guangzhou, 2017). |
[79] | Shen J J, Luo G X, Pan Y, Liu Z J, Jiang Z H. Research on glass cutting process base on 532 nm wavelength nanosecond laser. Appl Laser 35, 493-499 (2015). |
[80] | Rolo A, Coelho J, Pires M. Laser glass marking: influence of pulse characteristics. Proc SPIE 5958, 59583D (2005). doi: 10.1117/12.628989 |
[81] | Nakazumi T, Sato T, Narazaki A, Niino H. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference. J Micromechan Microeng 26, 095015 (2016). doi: 10.1088/0960-1317/26/9/095015 |
[82] | Dumont T, Lippert T, Wokaun A, Leyvraz P. Laser writing of 2D data matrices in glass. Thin Solid Films 453-454, 42-45 (2004). doi: 10.1016/j.tsf.2003.11.148 |
[83] | Zhang X M, Ma J Q, Ding Y F. Analysis of marking glass with different process parameters based on super-pulsed laser. Adv Mater Res 602-604, 929-933 (2013). |
[84] | Sato T, Narazaki A, Niino H. Fabrication of micropits by LIBWE for laser marking of glass materials. J Laser Micro/Nanoeng 12, 248-253 (2017). |
[85] | Ding X, Yasui Y, Kawaguchi Y, Niino H, Yabe A. Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl Phys A 75, 437-440 (2002). doi: 10.1007/s003390101131 |
[86] | Ding X, Kawaguchi Y, Niino H, Yabe A. Laser-induced high-quality etching of fused silica using a novel aqueous medium.Appl Phys A 75, 641-645 (2002). |
[87] | Ding X M, Sato T, Kawaguchi Y, Niino H. Laser-induced backside wet etching of sapphire. Jpn J Appl Phys 42, 176-178 (2003). doi: 10.1143/JJAP.42.L176 |
[88] | Wang J, Niino H, Yabe A. Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl Phys A 69, S271-S273 (1999). doi: 10.1007/s003390051398 |
[89] | Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T et al. Laser ablation of toluene liquid for surface micro-structuring of silica glass. Appl Surf Sci 252, 4387-4391 (2006). doi: 10.1016/j.apsusc.2005.07.084 |
[90] | Sohn I B, Choi H K, Yoo D, Noh Y C, Sung J H et al. Synchronized femtosecond laser pulse switching system based nano-patterning technology. Opt Mater 69, 295-302 (2017). doi: 10.1016/j.optmat.2017.04.055 |
[91] | Bekesi J, Meinertz J, Simon P, Ihlemann J. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation. Appl Phys A 110, 17-21 (2013). doi: 10.1007/s00339-012-7313-8 |
Mechanism of laser direct machining transparent brittle materials with long-pulse and ultrashort pulse. (a) Schematic diagram of long-pulse laser action. (b) Schematic diagram of ultrashort pulse laser. Figure reprinted with permission from ref.16, Springer-Verlag.
Laser scribing and breaking. (a) Laser scribing. (b) Mechanical breaking. Figure reprinted with permission from ref.17, Springer-Verlag.
Representation of laser stealth dicing sapphire wafer. (a) Schematic illustration of the process for slicing. A laser beam is focused on point inside the wafer to form a stealth dicing (SD) layer. (b) The separation process. Fixing the expanded film with the wafer adhered to the wafer on a two-dimensional platform, and the sapphire wafer is separated by applying an external force. (c) Commonly used multifocal optical system diagram. Figure reproduced from: (a), (b) ref.22, Chinese Journal of Lasers; (c) ref.23.
(a–d) The physical process of black color laser patterning of glass substrates. (e) Black laser pattern of glass substrate. Figure reproduced from: (a)–(d) ref.50, Optical Society of America.
(a) Schematic diagram of three-dimensional model. (b) Temperature variation of different Z positions. Figure reprinted with permission from ref.57, Elsevier Ltd.
Proposed mechanism of the glass cutting using 1064 nm laser irradiation. (a) Laser irradiates from the top. (b) Copper deposition on the underneath of the glass. (c) The deposited copper absorbs the laser energy and heats up the immediate glass region. (d) Removal of the molten glass. Figure reprinted with permission from ref.61, Springer-Verlag.
(a) Contours of the vapor volume fraction by simulation. (b) High-speed photography of cavitation bubble. Figure reproduced from ref.64.
Schematic illustration of the LIBWE process using near-infrared laser pulses with (a) a low repetition rate and (b) a high repetition rate. Figure reprinted with permission from ref.67, Elsevier Ltd.
(a) Experimental device for acquiring pressure signals. (b) The whole acquisition time of the pulse pressure signals. (c) The part of the pressure signals under single-pulse. Laser energy density of 90.94 J/cm2, solution concentration of 1 mol/L, pulse width of 100 ns, detection distance of 2 mm, laser repetition frequency of 2.5 kHz. Figure reproduced from ref.72.
Optical micrograph. (a) Microlens. (b) Y-shaped microfluidic channel. (c) The enlarged image of the channel formed by the microlens. Figure reprinted with permission from ref.73, Springer-Verlag.
(a) Internal diffraction 1D micro-grating fabricated with fs laser. (b) Internal diffraction 2D micro-grating fabricated with fs laser. Schemes for (c) a double-layer 1D micro-grating, and (d) a stitched double-layer grating. Figure reprinted with permission from ref.74, Springer-Verlag.
SEM images of details microchannels with reservoir ablated in borosilicate glass. (a) Channel with reservoir. (b) Channel. (c) Close-up of the channel. (d) Close-up of the bottom of the channel (Ra 100–150 nm). Figure reprinted with permission from ref.75, Springer-Verlag.
SEM micrograph. (a) Circle micro-through-hole array. (b) Triangle micro-through-hole array. (c) Enlarged image of tip angle of the triangle micro-hrough-hole. Figure reprinted with permission from ref.76, Springer-Verlag, Berlin Heidelberg.
(a, b) Shaped cutting parts of sapphire cutting samples. (c) Tempered glass. (d) Quartz glass. (e) Solar glass. Figure reproduced with permission from: (a, b) ref.77, 78. (c–e) ref.79, Applied Laser.
(a) SEM micrograph of the line-and-space pattern on fused silica observed at an inclined angle of 45°. (b) Confocal scanning laser microscopic picture of a grid pattern on fused silica. Figure reprinted with permission from ref.85, Springer-Verlag.
SEM images of crossed grating patterns on F2 glass fabricated at 248 nm with the two-grating interferometer with double exposure, 250 mJ/cm2 average fluence. First exposure (generating nearly vertical lines): 200 pulses. The number of pulses of the second exposure (nearly horizontal lines) is increasing from (a) to (d). Figure reprinted with permission from ref.91, Springer-Verlag Berlin Heidelberg.