Liu H H, Yu Y, Song W, Jiang Q, Pang F F. Recent development of flat supercontinuum generation in specialty optical fibers. Opto-Electron Adv 2, 180020 (2019). doi: 10.29026/oea.2019.180020
Citation: Liu H H, Yu Y, Song W, Jiang Q, Pang F F. Recent development of flat supercontinuum generation in specialty optical fibers. Opto-Electron Adv 2, 180020 (2019). doi: 10.29026/oea.2019.180020

Review Open Access

Recent development of flat supercontinuum generation in specialty optical fibers

More Information
  • Supercontinuum (SC) generation has attracted a significant scientific interest in the past decades due to its promising applications covering the fields of metrology, spectroscopy, defense, as well as medical treatments. To date, researchers are devoted to improving the spectral width and flatness of SC generation by using specialty optical fibers. The flatness of the spectrum is of importance because it can improve the accuracy of measurement in practical applications. This paper summarizes the theory of SC, the state of the art of flat SC generation using optical fiber including photonic crystal fibers, soft glass fibers as well as germania-doped fibers, and suggests the future research direction of flat SC light source.
  • 加载中
  • [1] Théberge F, Bérubé N, Poulain S, Cozic S, Robichaud L R et al. Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers. Photonics Res 6, 609-613 (2018). doi: 10.1364/PRJ.6.000609

    CrossRef Google Scholar

    [2] Klimentov D, Tolstik N, Dvoyrin V V, Richter R, Sorokina I T. Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 μm. J Lightwave Technol 34, 4847-4855 (2016). doi: 10.1109/JLT.2016.2604039

    CrossRef Google Scholar

    [3] Yin K, Zhang B, Yang L Y, Hou J. 15.2   W spectrally flat all-fiber supercontinuum laser source with > 1  W power beyond 3.8   μm. Opt Lett 42, 2334-2337 (2017). doi: 10.1364/OL.42.002334

    CrossRef Google Scholar

    [4] Yang L Y, Zhang B, Yin K, Wu T Y, Zhao Y J et al. Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3 μm. Photonics Res 6, 417-421 (2018). doi: 10.1364/PRJ.6.000417

    CrossRef Google Scholar

    [5] Liu H H, Chow K K. Amplified spontaneous emission pulses for high-power supercontinuum generation. J Eng 3, 29-31 (2016).

    Google Scholar

    [6] Liang T, Feng X M. Research progress toward flat supercontinuum generation in fibers. Laser Optoelectron Prog 53, 060002 (2016). doi: 10.3788/LOP

    CrossRef Google Scholar

    [7] Hou J, Chen S P, Chen Z L, Wang Z F, Zhang B et al. Recent developments and key technology analysis of high power supercontinuum source. Laser Optoelectron Prog 50, 080010 (2013). doi: 10.3788/LOP

    CrossRef Google Scholar

    [8] Yang W Q. The study on high-power all-fiber mid-infrared supercontinuum generation (National University of Defense Technology, Changsha, China, 2014).

    Google Scholar

    [9] Lin C, Stolen R H. New nanosecond continuum for excited-state spectroscopy. Appl Phys Lett 28, 216-218 (1976). doi: 10.1063/1.88702

    CrossRef Google Scholar

    [10] Swiderski J. High-power mid-infrared supercontinuum sources: current status and future perspectives. Prog Quantum Electron 38, 189-235 (2014). doi: 10.1016/j.pquantelec.2014.10.002

    CrossRef Google Scholar

    [11] Gauthier J C, Robichaud L R, Fortin V, Vallée R, Bernier M. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives. Appl Phys B 124, 122 (2018).

    Google Scholar

    [12] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78, 1135-1184 (2006). doi: 10.1103/RevModPhys.78.1135

    CrossRef Google Scholar

    [13] Genty G, Coen S, Dudley J M. Fiber supercontinuum sources (Invited). J Opt Soc Am B 24, 1771-1785 (2007). doi: 10.1364/JOSAB.24.001771

    CrossRef Google Scholar

    [14] Agrawal G P. Nonlinear Fiber Optics (World Publishing Corporation, Beijing, China, 2009).

    Google Scholar

    [15] Michalska M, Mikolajczyk J, Wojtas J, Swiderski J. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses. Sci Rep 6, 39138 (2016). doi: 10.1038/srep39138

    CrossRef Google Scholar

    [16] Kudlinski A, George A K, Knight J C, Travers J C, Rulkov A B et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt Express 14, 5715-5722 (2006). doi: 10.1364/OE.14.005715

    CrossRef Google Scholar

    [17] Cumberland B A, Travers J C, Popov S V, Taylor J R. 29 W High power CW supercontinuum source. Opt Express 16, 5954-5962 (2008). doi: 10.1364/OE.16.005954

    CrossRef Google Scholar

    [18] Guo C Y, Ruan S C, Yan P G, Pan E M, Wei H F. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser. Opt Express 18, 11046-11051 (2010). doi: 10.1364/OE.18.011046

    CrossRef Google Scholar

    [19] Heidt A M. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J Opt Soc Am B 27, 550-559 (2010). doi: 10.1364/JOSAB.27.000550

    CrossRef Google Scholar

    [20] Heidt A M, Hartung A, Bosman G W, Krok P, Rohwer E G et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt Express 19, 3775-3787 (2011). doi: 10.1364/OE.19.003775

    CrossRef Google Scholar

    [21] Huang C L, Liao M S, Bi W J, Li X, Hu L L et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics Res 6, 601-608 (2018). doi: 10.1364/PRJ.6.000601

    CrossRef Google Scholar

    [22] Liu K, Liu J, Shi H X, Tan F Z, Wang P. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Opt Express 22, 24384-24391 (2014). doi: 10.1364/OE.22.024384

    CrossRef Google Scholar

    [23] Michalska M, Hlubina P, Swiderski J. Mid-infrared supercontinuum generation to ~4.7 μm in a ZBLAN fiber pumped by an optical parametric generator. IEEE Photonics J 9, 3200207 (2017).

    Google Scholar

    [24] Cheng T L, Nagasaka K, Tuan T H, Xue X J, Matsumoto M et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1   μm in a chalcogenide step-index fiber. Opt Lett 41, 2117-2120 (2016).

    Google Scholar

    [25] Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D et al. All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt Fiber Technol 18, 345-348 (2012). doi: 10.1016/j.yofte.2012.07.003

    CrossRef Google Scholar

    [26] Petersen C R, M ller U, Kubat I, Zhou B B, Dupont S et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photonics 8, 830-834 (2014). doi: 10.1038/nphoton.2014.213

    CrossRef Google Scholar

    [27] Zhao Z M, Wu B, Wang X S, Pan Z H, Liu Z J et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev 11, 1700005 (2017). doi: 10.1002/lpor.201700005

    CrossRef Google Scholar

    [28] Yang W Q, Zhang B, Yin K, Zhou X F, Hou J. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system. Opt Express 21, 19732-19742 (2013). doi: 10.1364/OE.21.019732

    CrossRef Google Scholar

    [29] Hagen C L, Walewski J W, Sanders S T. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Photonics Technol Lett 18, 91-93 (2006). doi: 10.1109/LPT.2005.860390

    CrossRef Google Scholar

    [30] Xia C A, Kumar M, Kulkarni O P, Islam M N, Terry F L et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt Lett 31, 2553-2555 (2006). doi: 10.1364/OL.31.002553

    CrossRef Google Scholar

    [31] Qin G S, Yan X, Kito C, Liao M S, Chaudhari C et al. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Appl Phys Lett 95, 161103 (2010).

    Google Scholar

    [32] Moselund P M, Petersen C, Leick L, Dam J S, Tidemand-Lichtenberg P et al. Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 µm used for nanosecond mid-IR spectroscopy. Adv Solid State Lasers 97 (2013).

    Google Scholar

    [33] Théberge F, Daigle J F, Vincent D, Mathieu P, Fortin J et al. Mid-infrared supercontinuum generation in fluoroindate fiber. Opt Lett 38, 4683-4685 (2013). doi: 10.1364/OL.38.004683

    CrossRef Google Scholar

    [34] Liu S. Study on the transmission characteristics of non-silica soft glass multi-core photonic crystal fiber (Yanshan University, Qinhuangdao, China, 2012).

    Google Scholar

    [35] Liao M S, Gao W Q, Cheng T L, Duan Z C, Duan X J et al. Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber. Opt Express 20, B574-B580 (2012) doi: 10.1364/OE.20.00B574

    CrossRef Google Scholar

    [36] Klimczak M, Siwicki B, Skibiński P, Pysz D, Stępień R et al. Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt Express 22, 18824-18832 (2014). doi: 10.1364/OE.22.018824

    CrossRef Google Scholar

    [37] Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photonics 9, 133-139 (2015). doi: 10.1038/nphoton.2014.320

    CrossRef Google Scholar

    [38] Diouf M, Salem A B, Cherif R, Saghaei H, Wague A. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl Opt 56, 163-169 (2017). doi: 10.1364/AO.56.000163

    CrossRef Google Scholar

    [39] Dudley J M, Taylor J R. Ten years of nonlinear optics in photonic crystal fibre. Nat Photonics 3, 85-90 (2009). doi: 10.1038/nphoton.2008.285

    CrossRef Google Scholar

    [40] Kudlinski A, Mussot A. Optimization of continuous-wave supercontinuum generation. Opt Fiber Technol 18, 322-326 (2012). doi: 10.1016/j.yofte.2012.06.003

    CrossRef Google Scholar

    [41] Yin K, Zhang B, Yang L Y, Hou J. 30 W monolithic 2-3 μm supercontinuum laser. Photonics Res 6, 123-126 (2018). doi: 10.1364/PRJ.6.000123

    CrossRef Google Scholar

    [42] Yin K, Zhang B, Yao J M, Yang L Y, Liu G C et al. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear Germania fiber with a high mid-infrared power ratio. Opt Lett 41, 5067-5070 (2016). doi: 10.1364/OL.41.005067

    CrossRef Google Scholar

    [43] Kamynin V A, Kurkov A S, Mashinsky V M. Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber. Laser Phys Lett 9, 219-222 (2012). doi: 10.1002/lapl.v9.3

    CrossRef Google Scholar

    [44] Wang C C, Wang M H, Wu J. Heavily germanium-doped silica fiber with a flat normal dispersion profile. IEEE Photonics J 7, 7101110 (2015).

    Google Scholar

    [45] Yang L Y, Zhang B, Yin K, Yao J M, Liu G C et al. 0.6-3.2 μm supercontinuum generation in a step-index Germania-core fiber using a 4.4 kW peak-power pump laser. Opt Express 24, 12600-12606 (2016). doi: 10.1364/OE.24.012600

    CrossRef Google Scholar

    [46] Zhu L, Wang L L, Dong X Y, Shen P, Su H B. Mid-Infrared supercontinuum generation with highly germanium-doped silica fiber. Acta Opt Sin 36, 173-177 (2016).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint