Citation: | Liu H H, Yu Y, Song W, Jiang Q, Pang F F. Recent development of flat supercontinuum generation in specialty optical fibers. Opto-Electron Adv 2, 180020 (2019). doi: 10.29026/oea.2019.180020 |
[1] | Théberge F, Bérubé N, Poulain S, Cozic S, Robichaud L R et al. Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers. Photonics Res 6, 609-613 (2018). doi: 10.1364/PRJ.6.000609 |
[2] | Klimentov D, Tolstik N, Dvoyrin V V, Richter R, Sorokina I T. Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 μm. J Lightwave Technol 34, 4847-4855 (2016). doi: 10.1109/JLT.2016.2604039 |
[3] | Yin K, Zhang B, Yang L Y, Hou J. 15.2 W spectrally flat all-fiber supercontinuum laser source with > 1 W power beyond 3.8 μm. Opt Lett 42, 2334-2337 (2017). doi: 10.1364/OL.42.002334 |
[4] | Yang L Y, Zhang B, Yin K, Wu T Y, Zhao Y J et al. Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3 μm. Photonics Res 6, 417-421 (2018). doi: 10.1364/PRJ.6.000417 |
[5] | Liu H H, Chow K K. Amplified spontaneous emission pulses for high-power supercontinuum generation. J Eng 3, 29-31 (2016). |
[6] | Liang T, Feng X M. Research progress toward flat supercontinuum generation in fibers. Laser Optoelectron Prog 53, 060002 (2016). doi: 10.3788/LOP |
[7] | Hou J, Chen S P, Chen Z L, Wang Z F, Zhang B et al. Recent developments and key technology analysis of high power supercontinuum source. Laser Optoelectron Prog 50, 080010 (2013). doi: 10.3788/LOP |
[8] | Yang W Q. The study on high-power all-fiber mid-infrared supercontinuum generation (National University of Defense Technology, Changsha, China, 2014). |
[9] | Lin C, Stolen R H. New nanosecond continuum for excited-state spectroscopy. Appl Phys Lett 28, 216-218 (1976). doi: 10.1063/1.88702 |
[10] | Swiderski J. High-power mid-infrared supercontinuum sources: current status and future perspectives. Prog Quantum Electron 38, 189-235 (2014). doi: 10.1016/j.pquantelec.2014.10.002 |
[11] | Gauthier J C, Robichaud L R, Fortin V, Vallée R, Bernier M. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives. Appl Phys B 124, 122 (2018). |
[12] | Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78, 1135-1184 (2006). doi: 10.1103/RevModPhys.78.1135 |
[13] | Genty G, Coen S, Dudley J M. Fiber supercontinuum sources (Invited). J Opt Soc Am B 24, 1771-1785 (2007). doi: 10.1364/JOSAB.24.001771 |
[14] | Agrawal G P. Nonlinear Fiber Optics (World Publishing Corporation, Beijing, China, 2009). |
[15] | Michalska M, Mikolajczyk J, Wojtas J, Swiderski J. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses. Sci Rep 6, 39138 (2016). doi: 10.1038/srep39138 |
[16] | Kudlinski A, George A K, Knight J C, Travers J C, Rulkov A B et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt Express 14, 5715-5722 (2006). doi: 10.1364/OE.14.005715 |
[17] | Cumberland B A, Travers J C, Popov S V, Taylor J R. 29 W High power CW supercontinuum source. Opt Express 16, 5954-5962 (2008). doi: 10.1364/OE.16.005954 |
[18] | Guo C Y, Ruan S C, Yan P G, Pan E M, Wei H F. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser. Opt Express 18, 11046-11051 (2010). doi: 10.1364/OE.18.011046 |
[19] | Heidt A M. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J Opt Soc Am B 27, 550-559 (2010). doi: 10.1364/JOSAB.27.000550 |
[20] | Heidt A M, Hartung A, Bosman G W, Krok P, Rohwer E G et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt Express 19, 3775-3787 (2011). doi: 10.1364/OE.19.003775 |
[21] | Huang C L, Liao M S, Bi W J, Li X, Hu L L et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics Res 6, 601-608 (2018). doi: 10.1364/PRJ.6.000601 |
[22] | Liu K, Liu J, Shi H X, Tan F Z, Wang P. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Opt Express 22, 24384-24391 (2014). doi: 10.1364/OE.22.024384 |
[23] | Michalska M, Hlubina P, Swiderski J. Mid-infrared supercontinuum generation to ~4.7 μm in a ZBLAN fiber pumped by an optical parametric generator. IEEE Photonics J 9, 3200207 (2017). |
[24] | Cheng T L, Nagasaka K, Tuan T H, Xue X J, Matsumoto M et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Opt Lett 41, 2117-2120 (2016). |
[25] | Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D et al. All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt Fiber Technol 18, 345-348 (2012). doi: 10.1016/j.yofte.2012.07.003 |
[26] | Petersen C R, M ller U, Kubat I, Zhou B B, Dupont S et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photonics 8, 830-834 (2014). doi: 10.1038/nphoton.2014.213 |
[27] | Zhao Z M, Wu B, Wang X S, Pan Z H, Liu Z J et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev 11, 1700005 (2017). doi: 10.1002/lpor.201700005 |
[28] | Yang W Q, Zhang B, Yin K, Zhou X F, Hou J. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system. Opt Express 21, 19732-19742 (2013). doi: 10.1364/OE.21.019732 |
[29] | Hagen C L, Walewski J W, Sanders S T. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Photonics Technol Lett 18, 91-93 (2006). doi: 10.1109/LPT.2005.860390 |
[30] | Xia C A, Kumar M, Kulkarni O P, Islam M N, Terry F L et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt Lett 31, 2553-2555 (2006). doi: 10.1364/OL.31.002553 |
[31] | Qin G S, Yan X, Kito C, Liao M S, Chaudhari C et al. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Appl Phys Lett 95, 161103 (2010). |
[32] | Moselund P M, Petersen C, Leick L, Dam J S, Tidemand-Lichtenberg P et al. Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 µm used for nanosecond mid-IR spectroscopy. Adv Solid State Lasers 97 (2013). |
[33] | Théberge F, Daigle J F, Vincent D, Mathieu P, Fortin J et al. Mid-infrared supercontinuum generation in fluoroindate fiber. Opt Lett 38, 4683-4685 (2013). doi: 10.1364/OL.38.004683 |
[34] | Liu S. Study on the transmission characteristics of non-silica soft glass multi-core photonic crystal fiber (Yanshan University, Qinhuangdao, China, 2012). |
[35] | Liao M S, Gao W Q, Cheng T L, Duan Z C, Duan X J et al. Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber. Opt Express 20, B574-B580 (2012) doi: 10.1364/OE.20.00B574 |
[36] | Klimczak M, Siwicki B, Skibiński P, Pysz D, Stępień R et al. Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt Express 22, 18824-18832 (2014). doi: 10.1364/OE.22.018824 |
[37] | Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photonics 9, 133-139 (2015). doi: 10.1038/nphoton.2014.320 |
[38] | Diouf M, Salem A B, Cherif R, Saghaei H, Wague A. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl Opt 56, 163-169 (2017). doi: 10.1364/AO.56.000163 |
[39] | Dudley J M, Taylor J R. Ten years of nonlinear optics in photonic crystal fibre. Nat Photonics 3, 85-90 (2009). doi: 10.1038/nphoton.2008.285 |
[40] | Kudlinski A, Mussot A. Optimization of continuous-wave supercontinuum generation. Opt Fiber Technol 18, 322-326 (2012). doi: 10.1016/j.yofte.2012.06.003 |
[41] | Yin K, Zhang B, Yang L Y, Hou J. 30 W monolithic 2-3 μm supercontinuum laser. Photonics Res 6, 123-126 (2018). doi: 10.1364/PRJ.6.000123 |
[42] | Yin K, Zhang B, Yao J M, Yang L Y, Liu G C et al. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear Germania fiber with a high mid-infrared power ratio. Opt Lett 41, 5067-5070 (2016). doi: 10.1364/OL.41.005067 |
[43] | Kamynin V A, Kurkov A S, Mashinsky V M. Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber. Laser Phys Lett 9, 219-222 (2012). doi: 10.1002/lapl.v9.3 |
[44] | Wang C C, Wang M H, Wu J. Heavily germanium-doped silica fiber with a flat normal dispersion profile. IEEE Photonics J 7, 7101110 (2015). |
[45] | Yang L Y, Zhang B, Yin K, Yao J M, Liu G C et al. 0.6-3.2 μm supercontinuum generation in a step-index Germania-core fiber using a 4.4 kW peak-power pump laser. Opt Express 24, 12600-12606 (2016). doi: 10.1364/OE.24.012600 |
[46] | Zhu L, Wang L L, Dong X Y, Shen P, Su H B. Mid-Infrared supercontinuum generation with highly germanium-doped silica fiber. Acta Opt Sin 36, 173-177 (2016). |
Schematic diagram of supercontinuum generation.
Transmission spectra of selected optical fibers (based on the data presented in the available literature).
Measured dispersion curve and calculated mode field diameter (MFD) for PCF.
Spectra of supercontinuum generation by pumping PCF A in different pulse energy.
Simulated spectrogram of the pulse evolution at different transmission lengths in the ANDi PCF with projected temporal and spectral intensity profiles.
Experimental setup and spectra of spectrally flat supercontinuum generation.
Experimental setup and spectra for SC generation in the InF3 fiber.
(a) Experimental setup of supercontinuum generation in germania-core fiber. (b) Spectral comparison at different positions. (c) Dispersion and loss distribution curve. Figure reproduced from ref.41.