Citation: | Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). doi: 10.29026/oea.2019.180023 |
[1] | Paniagua-Domínguez R, Yu Y F, Miroshnichenko A E, Krivitsky L A, Fu Y H et al. Generalized Brewster effect in dielectric metasurfaces. Nat Commun 7, 10362 (2016). doi: 10.1038/ncomms10362 |
[2] | Alù A, D'Aguanno G, Mattiucci N, Bloemer M J. Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. Phys Rev Lett 106, 123902 (2011). doi: 10.1103/PhysRevLett.106.123902 |
[3] | Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014). doi: 10.1126/science.1249799 |
[4] | Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[5] | Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[6] | Tang D L, Wang C T, Zhao Z Y, Wang Y Q, Pu M B et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182 |
[7] | Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev 9, 195–213 (2015). doi: 10.1002/lpor.201400402 |
[8] | Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv 2, e1501168 (2016). doi: 10.1126/sciadv.1501168 |
[9] | Ma Z J, Hanham S M, Albella P, Ng B, Lu H T et al. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010–1018 (2016). doi: 10.1021/acsphotonics.6b00096 |
[10] | Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev 10, 986–994 (2016). doi: 10.1002/lpor.201600106 |
[11] | Bao Y J, Zu S, Liu W, Zhou L, Zhu X et al. Revealing the spin optics in conic-shaped metasurfaces. Phys Rev B 95, 081406 (2017). doi: 10.1103/PhysRevB.95.081406 |
[12] | Jiang Q, Bao Y J, Lin F, Zhu X, Zhang S et al. Spin-controlled integrated near- and far-field optical launcher. Adv Funct Mater 28, 1705503 (2018). doi: 10.1002/adfm.v28.8 |
[13] | Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[14] | Ohman G. The pseudo-brewster angle. IEEE Trans Antennas Propag 25, 903–904 (1977). doi: 10.1109/TAP.1977.1141718 |
[15] | Azzam R M A. Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric–conductor interface. J Opt Soc Am A 30, 1975–1979 (2013). |
[16] | Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107, 045901 (2011). doi: 10.1103/PhysRevLett.107.045901 |
[17] | Worthing A G. Deviation from lambert's law and polarization of light emitted by incandescent tungsten, tantalum and molybdenum and changes in the optical constants of tungsten with temperature. J Opt Soc Am 13, 635–649 (1926). doi: 10.1364/JOSA.13.000635 |
[18] | Pezzaniti J L, Chenault D, Gurton K, Felton M. Detection of obscured targets with IR polarimetric imaging. Proc SPIE, 9072, 90721D (2014). |
[19] | Tyo J S, Goldstein D L, Chenault D B, Shaw J A. Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45, 5453–5469 (2006). doi: 10.1364/AO.45.005453 |
[20] | Wang K L, Mittleman D M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004). doi: 10.1038/nature03040 |
[21] | Pu M B, Guo Y H, Li X, Ma X L, Luo X G. Revisitation of extraordinary young's interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018). doi: 10.1021/acsphotonics.8b00437 |
[22] | Luo X G. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 25, 1804680 (2019). |
[23] | Luo X G, Tsai D, Gu M, Hong M H. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757–842 (2018). doi: 10.1364/AOP.10.000757 |
[24] | Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). |
[25] | Xie X, Pu M B, Huang Y J, Ma X L, Li X et al. Heat Resisting Metallic Meta‐Skin for Simultaneous Microwave Broadband Scattering and Infrared Invisibility Based on Catenary Optical Field. Adv Mater Technol, 1800612 (2018). https://doi.org/10.1002/admt.201800612 |
[26] | CST Microwave Studios. CST-Computer Simulation Technology AG, 2013. |
[27] | Granick S, Zhu Y X, Lee H. Slippery questions about complex fluids flowing past solids. Nat Mater 2, 221–227 (2003). doi: 10.1038/nmat854 |
[28] | Pu M B, Li X, Guo Y H, Ma X L, Luo X G. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017). doi: 10.1364/OE.25.031471 |
[29] | Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y et al. High-efficiency and wide‐angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6, 1800592 (2018). doi: 10.1002/adom.v6.19 |
[30] | Sandus O. A review of emission polarization. Appl Opt 4, 1634–1642 (1965). doi: 10.1364/AO.4.001634 |
[31] | Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002). doi: 10.1038/416061a |
[32] | Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep 57, 59–112 (2005). doi: 10.1016/j.surfrep.2004.12.002 |
[33] | Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser Photonics Rev 5, 234–246 (2011). doi: 10.1002/lpor.v5.2 |
[34] | Barlow H M, Cullen A L. Surface waves. Proc IEE - Part III Radio Commun Eng 100, 329–341 (1953). doi: 10.1049/pi-3.1953.0068 |
[35] | Shin J, Shen J T, Catrysse P B, Fan S H. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Sel Top Quantum Electron 12, 1116–1122 (2006). doi: 10.1109/JSTQE.2006.879577 |
[36] | Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial. Appl Phys Lett 93, 191911 (2008). doi: 10.1063/1.3021082 |
[37] | Pu M B, Chen P, Wang Y Q, Zhao Z Y, Huang C et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett 102, 131906 (2013). doi: 10.1063/1.4799162 |
[38] | Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013). doi: 10.1126/science.1235399 |
Supplementary information for All-metallic wide-angle metasurfaces for multifunctional polarization manipulation |
(a) Electromagnetic reflection on a flat surface at the pseudo-Brewster angle. Note that the reflection minimum is related to the Zenneck surface wave that propagates along the interface between air and a lossy smooth metal. (b) Electric field distribution at the pseudo-Brewster angle for a posts array.
Theoretical analysis of the metallic grating.
Broadband reflectance and polarimetric imaging.
Metallic posts array acting as a reflective waveplate.