Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). doi: 10.29026/oea.2019.180023
Citation: Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). doi: 10.29026/oea.2019.180023

Original Article Open Access

All-metallic wide-angle metasurfaces for multifunctional polarization manipulation

More Information
  • Optical camouflage is a magical capability of animals as first noticed in 1794 by Erasmus Darwin in Zoonomia, but current biomimetic camouflage strategies cannot be readily applied in complex environments involving multispectral and in particular multi-polarization detection. Here we develop a plasmonic approach toward broadband infrared polarimetric crypsis, where the polarized thermal emission near the pseudo-Brewster angle is the main signal source and no existing polarizing camouflage technique has been discovered in nature. Based on all-metallic subwavelength structures, an electrodynamic resistance-reduction mechanism is proposed to avoid the significant polarization-dependent infrared absorption/radiation. It is also found that the structured metal surface presents giant extrinsic anisotropy regarding the phase shift between orthogonal polarization states, which helps to realize ultrahigh-efficiency and tunable polarization conversion in an unprecedented manner. Finally, we note that the catenary optical theory may provide a useful means to explain and predict these unusual performances.
  • 加载中
  • [1] Paniagua-Domínguez R, Yu Y F, Miroshnichenko A E, Krivitsky L A, Fu Y H et al. Generalized Brewster effect in dielectric metasurfaces. Nat Commun 7, 10362 (2016). doi: 10.1038/ncomms10362

    CrossRef Google Scholar

    [2] Alù A, D'Aguanno G, Mattiucci N, Bloemer M J. Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. Phys Rev Lett 106, 123902 (2011). doi: 10.1103/PhysRevLett.106.123902

    CrossRef Google Scholar

    [3] Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014). doi: 10.1126/science.1249799

    CrossRef Google Scholar

    [4] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [5] Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [6] Tang D L, Wang C T, Zhao Z Y, Wang Y Q, Pu M B et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182

    CrossRef Google Scholar

    [7] Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev 9, 195–213 (2015). doi: 10.1002/lpor.201400402

    CrossRef Google Scholar

    [8] Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv 2, e1501168 (2016). doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [9] Ma Z J, Hanham S M, Albella P, Ng B, Lu H T et al. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010–1018 (2016). doi: 10.1021/acsphotonics.6b00096

    CrossRef Google Scholar

    [10] Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev 10, 986–994 (2016). doi: 10.1002/lpor.201600106

    CrossRef Google Scholar

    [11] Bao Y J, Zu S, Liu W, Zhou L, Zhu X et al. Revealing the spin optics in conic-shaped metasurfaces. Phys Rev B 95, 081406 (2017). doi: 10.1103/PhysRevB.95.081406

    CrossRef Google Scholar

    [12] Jiang Q, Bao Y J, Lin F, Zhu X, Zhang S et al. Spin-controlled integrated near- and far-field optical launcher. Adv Funct Mater 28, 1705503 (2018). doi: 10.1002/adfm.v28.8

    CrossRef Google Scholar

    [13] Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [14] Ohman G. The pseudo-brewster angle. IEEE Trans Antennas Propag 25, 903–904 (1977). doi: 10.1109/TAP.1977.1141718

    CrossRef Google Scholar

    [15] Azzam R M A. Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric–conductor interface. J Opt Soc Am A 30, 1975–1979 (2013).

    Google Scholar

    [16] Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107, 045901 (2011). doi: 10.1103/PhysRevLett.107.045901

    CrossRef Google Scholar

    [17] Worthing A G. Deviation from lambert's law and polarization of light emitted by incandescent tungsten, tantalum and molybdenum and changes in the optical constants of tungsten with temperature. J Opt Soc Am 13, 635–649 (1926). doi: 10.1364/JOSA.13.000635

    CrossRef Google Scholar

    [18] Pezzaniti J L, Chenault D, Gurton K, Felton M. Detection of obscured targets with IR polarimetric imaging. Proc SPIE, 9072, 90721D (2014).

    Google Scholar

    [19] Tyo J S, Goldstein D L, Chenault D B, Shaw J A. Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45, 5453–5469 (2006). doi: 10.1364/AO.45.005453

    CrossRef Google Scholar

    [20] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004). doi: 10.1038/nature03040

    CrossRef Google Scholar

    [21] Pu M B, Guo Y H, Li X, Ma X L, Luo X G. Revisitation of extraordinary young's interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018). doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [22] Luo X G. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 25, 1804680 (2019).

    Google Scholar

    [23] Luo X G, Tsai D, Gu M, Hong M H. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757–842 (2018). doi: 10.1364/AOP.10.000757

    CrossRef Google Scholar

    [24] Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018).

    Google Scholar

    [25] Xie X, Pu M B, Huang Y J, Ma X L, Li X et al. Heat Resisting Metallic Meta‐Skin for Simultaneous Microwave Broadband Scattering and Infrared Invisibility Based on Catenary Optical Field. Adv Mater Technol, 1800612 (2018). https://doi.org/10.1002/admt.201800612

    Google Scholar

    [26] CST Microwave Studios. CST-Computer Simulation Technology AG, 2013.

    Google Scholar

    [27] Granick S, Zhu Y X, Lee H. Slippery questions about complex fluids flowing past solids. Nat Mater 2, 221–227 (2003). doi: 10.1038/nmat854

    CrossRef Google Scholar

    [28] Pu M B, Li X, Guo Y H, Ma X L, Luo X G. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017). doi: 10.1364/OE.25.031471

    CrossRef Google Scholar

    [29] Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y et al. High-efficiency and wide‐angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6, 1800592 (2018). doi: 10.1002/adom.v6.19

    CrossRef Google Scholar

    [30] Sandus O. A review of emission polarization. Appl Opt 4, 1634–1642 (1965). doi: 10.1364/AO.4.001634

    CrossRef Google Scholar

    [31] Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002). doi: 10.1038/416061a

    CrossRef Google Scholar

    [32] Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep 57, 59–112 (2005). doi: 10.1016/j.surfrep.2004.12.002

    CrossRef Google Scholar

    [33] Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser Photonics Rev 5, 234–246 (2011). doi: 10.1002/lpor.v5.2

    CrossRef Google Scholar

    [34] Barlow H M, Cullen A L. Surface waves. Proc IEE - Part III Radio Commun Eng 100, 329–341 (1953). doi: 10.1049/pi-3.1953.0068

    CrossRef Google Scholar

    [35] Shin J, Shen J T, Catrysse P B, Fan S H. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Sel Top Quantum Electron 12, 1116–1122 (2006). doi: 10.1109/JSTQE.2006.879577

    CrossRef Google Scholar

    [36] Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial. Appl Phys Lett 93, 191911 (2008). doi: 10.1063/1.3021082

    CrossRef Google Scholar

    [37] Pu M B, Chen P, Wang Y Q, Zhao Z Y, Huang C et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett 102, 131906 (2013). doi: 10.1063/1.4799162

    CrossRef Google Scholar

    [38] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013). doi: 10.1126/science.1235399

    CrossRef Google Scholar

  • Supplementary information for All-metallic wide-angle metasurfaces for multifunctional polarization manipulation
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint