Hou Y H, Liu B, Liu Y, Zhou Y H, Song T T, Zhou Q et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated. Opto-Electron Adv 2, 180028 (2019). doi: 10.29026/oea.2019.180028
Citation: Hou Y H, Liu B, Liu Y, Zhou Y H, Song T T, Zhou Q et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated. Opto-Electron Adv 2, 180028 (2019). doi: 10.29026/oea.2019.180028

Original Article Open Access

Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated

More Information
  • One of the bottleneck issues for commercial scale-up of Ti additive manufacturing lies in high cost of raw material, i.e. the spherical Ti powder that is often made by gas atomization. In this study, we address this significant issue by way of powder modification & ball milling processing, which shows that it is possible to produce printable Ti powders based on ultra-low cost, originally unprintable hydrogenation-dehydrogenation (HDH) Ti powder. It is also presented that the as-printed Ti using the modified powder exhibits outstanding mechanical properties, showing a combination of excellent fracture strength (~895 MPa) and high ductility (~19.0% elongation).
  • 加载中
  • [1] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim, 2003).

    Google Scholar

    [2] Lütjering G, Williams J C. Titanium. Engineering Materials and Processes, 2nd ed (Springer-Verlag, Berlin, 2007).

    Google Scholar

    [3] Yan M, Dargusch M S, Ebel T, Qian M. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Mater 68, 196-206 (2014). doi: 10.1016/j.actamat.2014.01.015

    CrossRef Google Scholar

    [4] Lu B H, Lan H B, Liu H Z. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv 1, 170004 (2018). doi: 10.29026/oea.2018.170004

    CrossRef Google Scholar

    [5] Qian M, Xu W, Brandt M, Tang H P. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bull 41, 775-784 (2016). doi: 10.1557/mrs.2016.215

    CrossRef Google Scholar

    [6] Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth J P. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58, 3303-3312 (2010). doi: 10.1016/j.actamat.2010.02.004

    CrossRef Google Scholar

    [7] Zhou Y H, Lin S F, Hou Y H, Wang D W, Zhou P et al. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting. Appl Surf Sci 441, 210-217 (2018). doi: 10.1016/j.apsusc.2018.01.296

    CrossRef Google Scholar

    [8] Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mater Sci Eng: A 578, 230-239 (2013). doi: 10.1016/j.msea.2013.04.099

    CrossRef Google Scholar

    [9] Ouyang D, Li N, Xing W, Zhang J J, Liu L. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting. Intermetallics 90, 128-134 (2017). doi: 10.1016/j.intermet.2017.07.010

    CrossRef Google Scholar

    [10] Li N, Zhang J J, Xing W, Ouyang D, Liu L. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater Des 143, 285-296 (2018). doi: 10.1016/j.matdes.2018.01.061

    CrossRef Google Scholar

    [11] Yan M, Yu P. An Overview of densification, microstructure and mechanical property of additively manufactured Ti-6Al-4V-Comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder. In Lakshmanan A, Sintering Techniques of Materials (IntechOpen, London, 2015).

    Google Scholar

    [12] Upadhyaya G S. Powder Metallurgy Technology (Cambridge International Science Publishing, Cambridge, 1998).

    Google Scholar

    [13] Lu S C. Powder Technology Handbook (Chemical Industry Press, Beijing, 2004).

    Google Scholar

    [14] Benjamin J S, Volin T E. The mechanism of mechanical alloying. Metall Trans 5, 1929-1934 (1974). doi: 10.1007/BF02644161

    CrossRef Google Scholar

    [15] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci 46, 1-184 (2001). doi: 10.1016/S0079-6425(99)00010-9

    CrossRef Google Scholar

    [16] Gilman P S, Benjamin J S. Mechanical alloying. Ann Rev Mater Sci 39, 279-300 (1983). doi: 10.1007/BF03258604

    CrossRef Google Scholar

    [17] Lide D R. CRC Handbook of Chemistry and Physics, 2009-2010 90th ed (CRC Press, Boca Raton, 2009).

    Google Scholar

    [18] Xi S Q, Qu X Y, Zheng X L, Ma M L, Liu X K et al. Mater Sci Tech 5, 45 (1997).

    Google Scholar

    [19] Yang J J, Yu H C, Yin J, Gao M, Wang Z M et al.Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Des 108, 308-318 (2016). doi: 10.1016/j.matdes.2016.06.117

    CrossRef Google Scholar

    [20] Murray J L. Fe-Ti (Iron-Titanium). In Okamoto H, Phase Diagrams of Binary Iron Alloys (ASM International, Materials Park, OH, 429-432, 1993).

    Google Scholar

    [21] Yan M, Qian M, Song T T, Dargusch M S. Significant α-phase growth confinement in Grade 4 titanium and substantial β-phase refinement in Grade 7 titanium. MRS Commun 4, 183-188 (2014). doi: 10.1557/mrc.2014.33

    CrossRef Google Scholar

    [22] ASTM B861-10, Standard Specification for Titanium and Titanium Alloy Seamless Pipe, (ASTM International, West Conshohocken, PA, 2010), www.astm.org.

    Google Scholar

    [23] Yan M, Xu W, Dargusch M S, Tang H P, Brandt M et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall 57, 251-257 (2014). doi: 10.1179/1743290114Y.0000000108

    CrossRef Google Scholar

    [24] Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci 26, 123-403 (1981). doi: 10.1016/0079-6425(81)90001-3

    CrossRef Google Scholar

    [25] Luo S D, Li Q, Tian J, Wang C, Yan M et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr Mater 69, 29-32 (2013). doi: 10.1016/j.scriptamat.2013.03.017

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint