Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019). doi: 10.29026/oea.2019.180030
Citation: Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019). doi: 10.29026/oea.2019.180030

Original Article Open Access

Revealing the plasmon coupling in gold nanochains directly from the near field

More Information
  • We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy (PEEM). The localization of the electromagnetic field in the near-field region was mapped at high spatial resolution. By tuning the excitation laser wavelength, we can obtain the near-field spectra, from which the energy splitting between longitudinal (L) and transverse (T) plasmon modes can be revealed. In particular, the L-mode red shifts and the T-mode blue shifts with increasing chain length. The red shift of the L-mode is highly dependent on the gap distance. In contrast, the T-mode almost remains constant within the range of gap distance we investigated. This energy splitting between the L-mode and the T-mode of metallic chains is in agreement with previous far-field measurements, where it was explained by dipole-dipole near-field coupling. Here, we provide direct proof of this near-field plasmon coupling in nanochains via the above-described near-field measurements using PEEM. In addition, we explore the energy transport along the gold nanochains under excitation at oblique illumination via PEEM measurements together with numerical simulations.
  • 加载中
  • [1] Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).10.1007/0-387-37825-1_2

    Google Scholar

    [2] Ueno K, Misawa H. Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles. Phys Chem Chem Phys 15, 4093-4099 (2013). doi: 10.1039/c2cp43681g

    CrossRef Google Scholar

    [3] Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107, 668-677 (2003). doi: 10.1021/jp026731y

    CrossRef Google Scholar

    [4] Halas N J, Lal S, Chang W S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev 111, 3913-3961 (2011). doi: 10.1021/cr200061k

    CrossRef Google Scholar

    [5] Wang X L, Gogol P, Cambril E, Palpant B. Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays. J Phys Chem C 116, 24741-24747 (2012). doi: 10.1021/jp306292r

    CrossRef Google Scholar

    [6] Song H F, Sun Q, Li J, Yang F, Yang J H et al. Exotic mode suppression in plasmonic heterotrimer system. J Phys Chem C 123, 1398-1405 (2019). doi: 10.1021/acs.jpcc.8b10263

    CrossRef Google Scholar

    [7] Barrow S J, Funston A M, Gomez D E, Davis T J, Mulvaney P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett 11, 4180-4187 (2011). doi: 10.1021/nl202080a

    CrossRef Google Scholar

    [8] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2, 229-232 (2003). doi: 10.1038/nmat852

    CrossRef Google Scholar

    [9] Wei Q H, Su K H, Durant S, Zhang X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4, 1067-1071 (2004). doi: 10.1021/nl049604h

    CrossRef Google Scholar

    [10] Arnold M D, Blaber M G, Ford M J, Harris N. Universal scaling of local plasmons in chains of metal spheres. Opt Express 18, 7528-7542 (2010). doi: 10.1364/OE.18.007528

    CrossRef Google Scholar

    [11] De Waele R, Koenderink A F, Polman A. Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7, 2004-2008 (2007). doi: 10.1021/nl070807q

    CrossRef Google Scholar

    [12] Quinten M, Leitner A, Krenn J R, Aussenegg F R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23, 1331-1333 (1998). doi: 10.1364/OL.23.001331

    CrossRef Google Scholar

    [13] Willingham B, Link S. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Opt Express 19, 6450-6461 (2011). doi: 10.1364/OE.19.006450

    CrossRef Google Scholar

    [14] Solis Jr D, Willingham B, Nauert S L, Slaughter L S, Olson J et al. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12, 1349-1353 (2012). doi: 10.1021/nl2039327

    CrossRef Google Scholar

    [15] Brongersma M L, Hartman J W, Atwater H A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62, R16356-R16359 (2000). doi: 10.1103/PhysRevB.62.R16356

    CrossRef Google Scholar

    [16] Maier S A, Kik P G, Atwater H A. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl Phys Lett 81, 1714-1716 (2002). doi: 10.1063/1.1503870

    CrossRef Google Scholar

    [17] Maier S A, Brongersma M L, Kik P G, Atwater H A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65, 193408 (2002). doi: 10.1103/PhysRevB.65.193408

    CrossRef Google Scholar

    [18] Chen H Y, He C L, Wang C Y, Lin M H, Mitsui D et al. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano 5, 8223-8229 (2011). doi: 10.1021/nn2029007

    CrossRef Google Scholar

    [19] Pocock S R, Xiao X F, Huidobro P A, Giannini V. Topological plasmonic chain with retardation and radiative effects. ACS Photonics 5, 2271-2279 (2018). doi: 10.1021/acsphotonics.8b00117

    CrossRef Google Scholar

    [20] Salerno M, Krenn J R, Hohenau A, Ditlbacher H, Schider G et al. The optical near-field of gold nanoparticle chains. Opt Commun 248, 543-549 (2005). doi: 10.1016/j.optcom.2004.12.023

    CrossRef Google Scholar

    [21] Shimada T, Imura K, Okamoto H, Kitajima M. Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy. Phys Chem Chem Phys 15, 4265-4269 (2013). doi: 10.1039/C2CP43128A

    CrossRef Google Scholar

    [22] Kim S I, Imura K, Kim S, Okamoto H. Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging. J Phys Chem C 115, 1548-1555 (2011). doi: 10.1021/jp108781q

    CrossRef Google Scholar

    [23] Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82, 2590-2593 (1999). doi: 10.1103/PhysRevLett.82.2590

    CrossRef Google Scholar

    [24] Coenen T, Vesseur E J R, Polman A, Koenderink A F. Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett 11, 3779-3784 (2011). doi: 10.1021/nl201839g

    CrossRef Google Scholar

    [25] Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018). doi: 10.29026/oea.2018.180007

    CrossRef Google Scholar

    [26] Kubo A, Onda K, Petek H, Sun Z J, Jung Y S et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5, 1123-1127 (2005). doi: 10.1021/nl0506655

    CrossRef Google Scholar

    [27] Kubo A, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7, 470-475 (2007). doi: 10.1021/nl0627846

    CrossRef Google Scholar

    [28] Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P et al. Coherent two-dimensional nanoscopy. Science 333, 1723-1726 (2011). doi: 10.1126/science.1209206

    CrossRef Google Scholar

    [29] Douillard L, Charra F, Korczak Z, Bachelot R, Kostcheev S et al. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett 8, 935-940 (2008). doi: 10.1021/nl080053v

    CrossRef Google Scholar

    [30] Schertz F, Schmelzeisen M, Mohammadi R, Kreiter M, Elmers H J et al. Near field of strongly coupled plasmons: uncovering dark modes. Nano Lett 12, 1885-1890 (2012). doi: 10.1021/nl204277y

    CrossRef Google Scholar

    [31] Könenkamp R, Word R C, Fitzgerald J P S, Nadarajah A, Saliba S. Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures. Appl Phys Lett 101, 141114 (2012). doi: 10.1063/1.4757125

    CrossRef Google Scholar

    [32] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Sci Appl 2, e118 (2013). doi: 10.1038/lsa.2013.74

    CrossRef Google Scholar

    [33] Yang J H, Sun Q, Ueno K, Shi X, Oshikiri T et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat Commun 9, 4858 (2018). doi: 10.1038/s41467-018-07356-x

    CrossRef Google Scholar

    [34] Yu H, Sun Q, Ueno K, Oshikiri T, Kubo A et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano 10, 10373-10381 (2016). doi: 10.1021/acsnano.6b06206

    CrossRef Google Scholar

    [35] Spektor G, Kilbane D, Mahro A K, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187-1191 (2017). doi: 10.1126/science.aaj1699

    CrossRef Google Scholar

    [36] Ji B Y, Song X W, Dou Y P, Tao H Y, Gao X et al. Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution. New J Phys 20, 073031 (2018). doi: 10.1088/1367-2630/aad145

    CrossRef Google Scholar

    [37] Ji B Y, Wang Q, Song X W, Tao H Y, Dou Y P et al. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy. J Phys D: Appl Phys 50, 415309 (2017). doi: 10.1088/1361-6463/aa83a0

    CrossRef Google Scholar

    [38] Ueno K, Mizeikis V, Juodkazis S, Sasaki K, Misawa H. Optical properties of nanoengineered gold blocks. Opt Lett 30, 2158-2160 (2005). doi: 10.1364/OL.30.002158

    CrossRef Google Scholar

    [39] Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H. Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv Mater 20, 26-30 (2008). doi: 10.1002/(ISSN)1521-4095

    CrossRef Google Scholar

    [40] Wu B T, Ueno K, Yokota Y, Sun K, Zeng H P et al. Enhancement of a two-photon-induced reaction in solution using light-harvesting gold nanodimer structures. J Phys Chem Lett 3, 1443-1447 (2012). doi: 10.1021/jz300370b

    CrossRef Google Scholar

    [41] Rong K X, Gan F Y, Shi K B, Chu S S, Chen J J. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv Mater 30, 1706546 (2018). doi: 10.1002/adma.v30.21

    CrossRef Google Scholar

    [42] Wang M, Cao M, Chen X, Gu N. Subradiant plasmon modes in multilayer metal-dielectric nanoshells. J Phys Chem C 115, 20920-20925 (2011). doi: 10.1021/jp205736d

    CrossRef Google Scholar

    [43] Liu M Z, Lee T W, Gray S K, Guyot-Sionnest P, Pelton M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 102, 107401 (2009). doi: 10.1103/PhysRevLett.102.107401

    CrossRef Google Scholar

  • Supplementary information for Revealing the plasmon coupling in gold nanochains directly from the near field
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint