Citation: | Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019). doi: 10.29026/oea.2019.180030 |
[1] |
Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007). |
[2] | Ueno K, Misawa H. Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles. Phys Chem Chem Phys 15, 4093-4099 (2013). doi: 10.1039/c2cp43681g |
[3] | Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107, 668-677 (2003). doi: 10.1021/jp026731y |
[4] | Halas N J, Lal S, Chang W S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev 111, 3913-3961 (2011). doi: 10.1021/cr200061k |
[5] | Wang X L, Gogol P, Cambril E, Palpant B. Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays. J Phys Chem C 116, 24741-24747 (2012). doi: 10.1021/jp306292r |
[6] | Song H F, Sun Q, Li J, Yang F, Yang J H et al. Exotic mode suppression in plasmonic heterotrimer system. J Phys Chem C 123, 1398-1405 (2019). doi: 10.1021/acs.jpcc.8b10263 |
[7] | Barrow S J, Funston A M, Gomez D E, Davis T J, Mulvaney P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett 11, 4180-4187 (2011). doi: 10.1021/nl202080a |
[8] | Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2, 229-232 (2003). doi: 10.1038/nmat852 |
[9] | Wei Q H, Su K H, Durant S, Zhang X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4, 1067-1071 (2004). doi: 10.1021/nl049604h |
[10] | Arnold M D, Blaber M G, Ford M J, Harris N. Universal scaling of local plasmons in chains of metal spheres. Opt Express 18, 7528-7542 (2010). doi: 10.1364/OE.18.007528 |
[11] | De Waele R, Koenderink A F, Polman A. Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7, 2004-2008 (2007). doi: 10.1021/nl070807q |
[12] | Quinten M, Leitner A, Krenn J R, Aussenegg F R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23, 1331-1333 (1998). doi: 10.1364/OL.23.001331 |
[13] | Willingham B, Link S. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Opt Express 19, 6450-6461 (2011). doi: 10.1364/OE.19.006450 |
[14] | Solis Jr D, Willingham B, Nauert S L, Slaughter L S, Olson J et al. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12, 1349-1353 (2012). doi: 10.1021/nl2039327 |
[15] | Brongersma M L, Hartman J W, Atwater H A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62, R16356-R16359 (2000). doi: 10.1103/PhysRevB.62.R16356 |
[16] | Maier S A, Kik P G, Atwater H A. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl Phys Lett 81, 1714-1716 (2002). doi: 10.1063/1.1503870 |
[17] | Maier S A, Brongersma M L, Kik P G, Atwater H A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65, 193408 (2002). doi: 10.1103/PhysRevB.65.193408 |
[18] | Chen H Y, He C L, Wang C Y, Lin M H, Mitsui D et al. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano 5, 8223-8229 (2011). doi: 10.1021/nn2029007 |
[19] | Pocock S R, Xiao X F, Huidobro P A, Giannini V. Topological plasmonic chain with retardation and radiative effects. ACS Photonics 5, 2271-2279 (2018). doi: 10.1021/acsphotonics.8b00117 |
[20] | Salerno M, Krenn J R, Hohenau A, Ditlbacher H, Schider G et al. The optical near-field of gold nanoparticle chains. Opt Commun 248, 543-549 (2005). doi: 10.1016/j.optcom.2004.12.023 |
[21] | Shimada T, Imura K, Okamoto H, Kitajima M. Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy. Phys Chem Chem Phys 15, 4265-4269 (2013). doi: 10.1039/C2CP43128A |
[22] | Kim S I, Imura K, Kim S, Okamoto H. Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging. J Phys Chem C 115, 1548-1555 (2011). doi: 10.1021/jp108781q |
[23] | Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82, 2590-2593 (1999). doi: 10.1103/PhysRevLett.82.2590 |
[24] | Coenen T, Vesseur E J R, Polman A, Koenderink A F. Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett 11, 3779-3784 (2011). doi: 10.1021/nl201839g |
[25] | Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018). doi: 10.29026/oea.2018.180007 |
[26] | Kubo A, Onda K, Petek H, Sun Z J, Jung Y S et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5, 1123-1127 (2005). doi: 10.1021/nl0506655 |
[27] | Kubo A, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7, 470-475 (2007). doi: 10.1021/nl0627846 |
[28] | Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P et al. Coherent two-dimensional nanoscopy. Science 333, 1723-1726 (2011). doi: 10.1126/science.1209206 |
[29] | Douillard L, Charra F, Korczak Z, Bachelot R, Kostcheev S et al. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett 8, 935-940 (2008). doi: 10.1021/nl080053v |
[30] | Schertz F, Schmelzeisen M, Mohammadi R, Kreiter M, Elmers H J et al. Near field of strongly coupled plasmons: uncovering dark modes. Nano Lett 12, 1885-1890 (2012). doi: 10.1021/nl204277y |
[31] | Könenkamp R, Word R C, Fitzgerald J P S, Nadarajah A, Saliba S. Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures. Appl Phys Lett 101, 141114 (2012). doi: 10.1063/1.4757125 |
[32] | Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Sci Appl 2, e118 (2013). doi: 10.1038/lsa.2013.74 |
[33] | Yang J H, Sun Q, Ueno K, Shi X, Oshikiri T et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat Commun 9, 4858 (2018). doi: 10.1038/s41467-018-07356-x |
[34] | Yu H, Sun Q, Ueno K, Oshikiri T, Kubo A et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano 10, 10373-10381 (2016). doi: 10.1021/acsnano.6b06206 |
[35] | Spektor G, Kilbane D, Mahro A K, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187-1191 (2017). doi: 10.1126/science.aaj1699 |
[36] | Ji B Y, Song X W, Dou Y P, Tao H Y, Gao X et al. Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution. New J Phys 20, 073031 (2018). doi: 10.1088/1367-2630/aad145 |
[37] | Ji B Y, Wang Q, Song X W, Tao H Y, Dou Y P et al. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy. J Phys D: Appl Phys 50, 415309 (2017). doi: 10.1088/1361-6463/aa83a0 |
[38] | Ueno K, Mizeikis V, Juodkazis S, Sasaki K, Misawa H. Optical properties of nanoengineered gold blocks. Opt Lett 30, 2158-2160 (2005). doi: 10.1364/OL.30.002158 |
[39] | Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H. Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv Mater 20, 26-30 (2008). doi: 10.1002/(ISSN)1521-4095 |
[40] | Wu B T, Ueno K, Yokota Y, Sun K, Zeng H P et al. Enhancement of a two-photon-induced reaction in solution using light-harvesting gold nanodimer structures. J Phys Chem Lett 3, 1443-1447 (2012). doi: 10.1021/jz300370b |
[41] | Rong K X, Gan F Y, Shi K B, Chu S S, Chen J J. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv Mater 30, 1706546 (2018). doi: 10.1002/adma.v30.21 |
[42] | Wang M, Cao M, Chen X, Gu N. Subradiant plasmon modes in multilayer metal-dielectric nanoshells. J Phys Chem C 115, 20920-20925 (2011). doi: 10.1021/jp205736d |
[43] | Liu M Z, Lee T W, Gray S K, Guyot-Sionnest P, Pelton M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 102, 107401 (2009). doi: 10.1103/PhysRevLett.102.107401 |
Supplementary information for Revealing the plasmon coupling in gold nanochains directly from the near field |
(a) SEM image of an array of Au nanochains on a Nb-doped TiO2 substrate. (b, c) SEM images of nanochains with different chain lengths (b) and gap distances (c), respectively. (d, e) Plots of the L-mode and T-mode surface plasmon resonance peak wavelengths as a function of the chain length (d) and the gap size (e).
(a) Sketch map of the light illumination for the PEEM measurements. (b) SEM image of an Au nanochain with the designed gap size of 100 nm; PEEM images of the Au nanochain under different irradiation conditions: (c) mercury lamp, (d) mercury lamp and femtosecond laser pulses, and (e) femtosecond laser pulses. The dashed lines indicate the positions of the hot spots. The in-plane wave vector k// and polarization E// for the incident laser pulses are indicated in (e).
Near-field spectra of nanochains with a fixed gap distance of 10 nm but with three different chain lengths for (a) L-mode and (b) T-mode surface plasmons. (c, d) near-field spectra of nanochains with fixed chain length (N=7) but three different gap distances for L-mode and T-mode surface plasmons, respectively. (e, f) Summary of the dependence of both plasmon resonance peak wavelength on the chain length (e) and gap distance (f). The error bars in (e) and (f) are mainly ±10 nm, which is mainly resulted from the wavelength scan step of 10 nm. The origin of such measurement errors can account for the observed difference in peak wavelength between the L-mode and T-mode for a chain length 1 in (e).
PEEM images of Au nanochains with different gap distances: (a) 30 nm and (b) 100 nm. The outlines of the nanochains are indicated by dotted lines. (c) 3-D surface plot of the photoemission intensity from one nanochain with the gap distance of 30 nm, A SEM image (bottom) and its corresponding 3-D surface plot (above the SEM image) are also presented to help indicate the location of the hotspots. The in-plane wave vector k// and polarization E// for the incident laser pulses are indicated in (a).
FDTD simulations of the (a, c) electric field distribution and (b, d) surface charge distribution for two nanochains with different gap distances: 30 nm (a, b) and 100 nm (c, d). The inset shows a sketch of the light irradiation (the blue and red arrows present the polarization and the wavelength vector of the incident light, respectively).