Li B W, Zu S, Zhang Z P, Zheng L H, Jiang Q et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron Adv 2, 190008 (2019). doi: 10.29026/oea.2019.190008
Citation: Li B W, Zu S, Zhang Z P, Zheng L H, Jiang Q et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron Adv 2, 190008 (2019). doi: 10.29026/oea.2019.190008

Original Article Open Access

Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature

More Information
  • These authors contributed equally to this work

  • *Corresponding author: Z Y Fang, E-mail: zhyfang@pku.edu.cn
  • Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.
  • 加载中
  • [1] Törmä P, Barnes W L. Strong coupling between surface Plasmon polaritons and emitters: a review. Rep Prog Phys 78, 013901 (2015). doi: 10.1088/0034-4885/78/1/013901

    CrossRef Google Scholar

    [2] Christopoulos S, Von Högersthal G B H, Grundy A J D, Lagoudakis P G, Kavokin A V et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett 98, 126405 (2007). doi: 10.1103/PhysRevLett.98.126405

    CrossRef Google Scholar

    [3] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409-414 (2006). doi: 10.1038/nature05131

    CrossRef Google Scholar

    [4] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys 82, 1489-1537 (2010). doi: 10.1103/RevModPhys.82.1489

    CrossRef Google Scholar

    [5] Plumhof J D, Stöferle T, Mai L J, Scherf U, Mahrt R F. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater 13, 247-252 (2014). doi: 10.1038/nmat3825

    CrossRef Google Scholar

    [6] Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W. Modifying chemical landscapes by coupling to vacuum fields. Angew Chem Int Edit 51, 1592-1596 (2012). doi: 10.1002/anie.v51.7

    CrossRef Google Scholar

    [7] Galego J, Garcia-Vidal FJ, Feist J. Suppressing photochemical reactions with quantized light fields. Nat Commun 7, 13841 (2016). doi: 10.1038/ncomms13841

    CrossRef Google Scholar

    [8] Shi X, Ueno K, Oshikiri T, Sun Q, Sasaki K et al. Enhanced water splitting under modal strong coupling conditions. Nat Nanotechnol 13, 953-958 (2018). doi: 10.1038/s41565-018-0208-x

    CrossRef Google Scholar

    [9] Amo A, Liew T C H, Adrados C, Houdré R, Giacobino E et al. Exciton-polariton spin switches. Nat Photonics 4, 361-366 (2010). doi: 10.1038/nphoton.2010.79

    CrossRef Google Scholar

    [10] Peter E, Senellart P, Martrou D, Lemaître A, Hours J et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett 95, 067401 (2005). doi: 10.1103/PhysRevLett.95.067401

    CrossRef Google Scholar

    [11] Baumberg J J, Kavokin A V, Christopoulos S, Grundy A J D, Butté R et al. Spontaneous polarization buildup in a room-temperature polariton laser. Phys Rev Lett 101, 136409 (2008). doi: 10.1103/PhysRevLett.101.136409

    CrossRef Google Scholar

    [12] Li F, Orosz L, Kamoun O, Bouchoule S, Brimont C et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys Rev Lett 110, 196406 (2013). doi: 10.1103/PhysRevLett.110.196406

    CrossRef Google Scholar

    [13] Kéna-Cohen S, Forrest S R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photonics 4, 371-375 (2010). doi: 10.1038/nphoton.2010.86

    CrossRef Google Scholar

    [14] Agranovich V M, Litinskaia M, Lidzey D G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys Rev B 67, 085311 (2003). doi: 10.1103/PhysRevB.67.085311

    CrossRef Google Scholar

    [15] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [16] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712 (2012). doi: 10.1038/nnano.2012.193

    CrossRef Google Scholar

    [17] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86, 115409 (2012). doi: 10.1103/PhysRevB.86.115409

    CrossRef Google Scholar

    [18] Qiu D Y, da Jornada F H, Louie S G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111, 216805 (2013). doi: 10.1103/PhysRevLett.111.216805

    CrossRef Google Scholar

    [19] Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photonics 9, 30-34 (2015). doi: 10.1038/nphoton.2014.304

    CrossRef Google Scholar

    [20] Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine C R et al. Optical control of room-temperature valley polaritons. Nat Photonics 11, 491-496 (2017). doi: 10.1038/nphoton.2017.121

    CrossRef Google Scholar

    [21] Chen Y J, Cain J D, Stanev T K, Dravid V P, Stern N P. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat Photonics 11, 431-435 (2017). doi: 10.1038/nphoton.2017.86

    CrossRef Google Scholar

    [22] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [23] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat Photonics 7, 128-132 (2013). doi: 10.1038/nphoton.2012.340

    CrossRef Google Scholar

    [24] Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett 14, 1721-1727 (2014). doi: 10.1021/nl4035219

    CrossRef Google Scholar

    [25] Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J et al. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys Rev Lett 112, 153002 (2014). doi: 10.1103/PhysRevLett.112.153002

    CrossRef Google Scholar

    [26] Rodriguez S R K, Feist J, Verschuuren M A, Garcia Vidal F J, Gómez Rivas J. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. Phys Rev Lett 111, 166802 (2013). doi: 10.1103/PhysRevLett.111.166802

    CrossRef Google Scholar

    [27] Hägglund C, Zeltzer G, Ruiz R, Wangperawong A, Roelofs K E et al. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics. ACS Photonics 3, 456-463 (2016). doi: 10.1021/acsphotonics.5b00651

    CrossRef Google Scholar

    [28] Yang J H, Sun Q, Ueno K, Shi X, Oshikiri T et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface Plasmon modes. Nat Commun 9, 4858 (2018). doi: 10.1038/s41467-018-07356-x

    CrossRef Google Scholar

    [29] Shi J W, Lin M H, Chen I T, Estakhri N M, Zhang X Q et al. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface Plasmon polariton. Nat Commun 8, 35 (2017). doi: 10.1038/s41467-017-00048-y

    CrossRef Google Scholar

    [30] Wang M S, Li W, Scarabelli L, Rajeeva B B, Terrones M et al. Plasmon-trion and Plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale 9, 13947-13955 (2017). doi: 10.1039/C7NR03909C

    CrossRef Google Scholar

    [31] Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun 7, 11283 (2016). doi: 10.1038/ncomms11283

    CrossRef Google Scholar

    [32] Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F F et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl Phys Lett 104, 031112 (2014). doi: 10.1063/1.4862745

    CrossRef Google Scholar

    [33] Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett 15, 2700-2704 (2015). doi: 10.1021/acs.nanolett.5b00407

    CrossRef Google Scholar

    [34] Gao W, Lee Y H, Jiang R B, Wang J F, Liu T X et al. Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape-controlled Ag nanoantenna. Adv Mater 28, 701-706 (2016). doi: 10.1002/adma.201503905

    CrossRef Google Scholar

    [35] Janisch C, Song H M, Zhou C J, Lin Z, Elías A L et al. MoS2 monolayers on nanocavities: enhancement in light-matter interaction. 2D Mater 3, 025017 (2016) doi: 10.1088/2053-1583/3/2/025017

    CrossRef Google Scholar

    [36] Hao Q, Pang J B, Zhang Y, Wang J W, Ma L B et al. Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10 nm gap. Adv Opt Mater 6, 1700984 (2018). doi: 10.1002/adom.v6.2

    CrossRef Google Scholar

    [37] Sun J W, Hu H T, Zheng D, Zhang D X, Deng Q et al. Light-emitting plexciton: exploiting Plasmon-exciton interaction in the intermediate coupling regime. ACS Nano 12, 10393-10402 (2018). doi: 10.1021/acsnano.8b05880

    CrossRef Google Scholar

    [38] Lee B, Park J, Han G H, Ee H S, Naylor C H et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett 15, 3646-3653 (2015). doi: 10.1021/acs.nanolett.5b01563

    CrossRef Google Scholar

    [39] Li B W, Zu S, Zhou J D, Jiang Q, Du B W et al. Single-nanoparticle plasmonic electro-optic modulator based on MoS2 monolayers. ACS Nano 11, 9720-9727 (2017). doi: 10.1021/acsnano.7b05479

    CrossRef Google Scholar

    [40] Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H et al. Tunable fano resonance and Plasmon-exciton coupling in single Au nanotriangles on monolayer WS2 at room temperature. Adv Mater 30, 1705779 (2018). doi: 10.1002/adma.201705779

    CrossRef Google Scholar

    [41] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127-130 (2016). doi: 10.1038/nature17974

    CrossRef Google Scholar

    [42] Wang S J, Li S L, Chervy T, Shalabney A, Azzini S et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett 16, 4368-4374 (2016). doi: 10.1021/acs.nanolett.6b01475

    CrossRef Google Scholar

    [43] Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P et al. Manipulating coherent Plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett 17, 3809-3814 (2017). doi: 10.1021/acs.nanolett.7b01176

    CrossRef Google Scholar

    [44] Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett 17, 4689-4697 (2017). doi: 10.1021/acs.nanolett.7b01344

    CrossRef Google Scholar

    [45] Lee B, Liu W J, Naylor C H, Park J, Malek S C et al. Electrical tuning of exciton-Plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett 17, 4541-4547 (2017). doi: 10.1021/acs.nanolett.7b02245

    CrossRef Google Scholar

    [46] Cuadra J, Baranov D G, Wersäll M, Verre R, Antosiewicz T J et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system. Nano Lett 18, 1777-1785 (2018). doi: 10.1021/acs.nanolett.7b04965

    CrossRef Google Scholar

    [47] Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin A V et al. Observation of hybrid Tamm-Plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat Commun 8, 259 (2017). doi: 10.1038/s41467-017-00155-w

    CrossRef Google Scholar

    [48] Chakraborty B, Gu J, Sun Z, Khatoniar M, Bushati R et al. Control of strong light-matter interaction in monolayer WS2 through electric field gating. Nano Lett 18, 6455-6460 (2018). doi: 10.1021/acs.nanolett.8b02932

    CrossRef Google Scholar

    [49] Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S et al. Plasmonics for extreme light concentration and manipulation. Nat Mater 9, 193-204 (2010). doi: 10.1038/nmat2630

    CrossRef Google Scholar

    [50] Chanda D, Shigeta K, Truong T, Lui E, Mihi A et al. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun 2, 479 (2011). doi: 10.1038/ncomms1487

    CrossRef Google Scholar

    [51] Ameling R, Giessen H. Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett 10, 4394-4398 (2010). doi: 10.1021/nl1019408

    CrossRef Google Scholar

    [52] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev 112, 1555-1567 (1958). doi: 10.1103/PhysRev.112.1555

    CrossRef Google Scholar

    [53] Li Y L, Chernikov A, Zhang X, Rigosi A, Hill H M et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422

    CrossRef Google Scholar

  • Supplementary information for Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint