Citation: | Li B W, Zu S, Zhang Z P, Zheng L H, Jiang Q et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron Adv 2, 190008 (2019). doi: 10.29026/oea.2019.190008 |
[1] | Törmä P, Barnes W L. Strong coupling between surface Plasmon polaritons and emitters: a review. Rep Prog Phys 78, 013901 (2015). doi: 10.1088/0034-4885/78/1/013901 |
[2] | Christopoulos S, Von Högersthal G B H, Grundy A J D, Lagoudakis P G, Kavokin A V et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett 98, 126405 (2007). doi: 10.1103/PhysRevLett.98.126405 |
[3] | Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409-414 (2006). doi: 10.1038/nature05131 |
[4] | Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys 82, 1489-1537 (2010). doi: 10.1103/RevModPhys.82.1489 |
[5] | Plumhof J D, Stöferle T, Mai L J, Scherf U, Mahrt R F. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater 13, 247-252 (2014). doi: 10.1038/nmat3825 |
[6] | Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W. Modifying chemical landscapes by coupling to vacuum fields. Angew Chem Int Edit 51, 1592-1596 (2012). doi: 10.1002/anie.v51.7 |
[7] | Galego J, Garcia-Vidal FJ, Feist J. Suppressing photochemical reactions with quantized light fields. Nat Commun 7, 13841 (2016). doi: 10.1038/ncomms13841 |
[8] | Shi X, Ueno K, Oshikiri T, Sun Q, Sasaki K et al. Enhanced water splitting under modal strong coupling conditions. Nat Nanotechnol 13, 953-958 (2018). doi: 10.1038/s41565-018-0208-x |
[9] | Amo A, Liew T C H, Adrados C, Houdré R, Giacobino E et al. Exciton-polariton spin switches. Nat Photonics 4, 361-366 (2010). doi: 10.1038/nphoton.2010.79 |
[10] | Peter E, Senellart P, Martrou D, Lemaître A, Hours J et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett 95, 067401 (2005). doi: 10.1103/PhysRevLett.95.067401 |
[11] | Baumberg J J, Kavokin A V, Christopoulos S, Grundy A J D, Butté R et al. Spontaneous polarization buildup in a room-temperature polariton laser. Phys Rev Lett 101, 136409 (2008). doi: 10.1103/PhysRevLett.101.136409 |
[12] | Li F, Orosz L, Kamoun O, Bouchoule S, Brimont C et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys Rev Lett 110, 196406 (2013). doi: 10.1103/PhysRevLett.110.196406 |
[13] | Kéna-Cohen S, Forrest S R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photonics 4, 371-375 (2010). doi: 10.1038/nphoton.2010.86 |
[14] | Agranovich V M, Litinskaia M, Lidzey D G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys Rev B 67, 085311 (2003). doi: 10.1103/PhysRevB.67.085311 |
[15] | Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805 |
[16] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712 (2012). doi: 10.1038/nnano.2012.193 |
[17] | Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86, 115409 (2012). doi: 10.1103/PhysRevB.86.115409 |
[18] | Qiu D Y, da Jornada F H, Louie S G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111, 216805 (2013). doi: 10.1103/PhysRevLett.111.216805 |
[19] | Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photonics 9, 30-34 (2015). doi: 10.1038/nphoton.2014.304 |
[20] | Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine C R et al. Optical control of room-temperature valley polaritons. Nat Photonics 11, 491-496 (2017). doi: 10.1038/nphoton.2017.121 |
[21] | Chen Y J, Cain J D, Stanev T K, Dravid V P, Stern N P. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat Photonics 11, 431-435 (2017). doi: 10.1038/nphoton.2017.86 |
[22] | Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937 |
[23] | Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat Photonics 7, 128-132 (2013). doi: 10.1038/nphoton.2012.340 |
[24] | Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett 14, 1721-1727 (2014). doi: 10.1021/nl4035219 |
[25] | Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J et al. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys Rev Lett 112, 153002 (2014). doi: 10.1103/PhysRevLett.112.153002 |
[26] | Rodriguez S R K, Feist J, Verschuuren M A, Garcia Vidal F J, Gómez Rivas J. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. Phys Rev Lett 111, 166802 (2013). doi: 10.1103/PhysRevLett.111.166802 |
[27] | Hägglund C, Zeltzer G, Ruiz R, Wangperawong A, Roelofs K E et al. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics. ACS Photonics 3, 456-463 (2016). doi: 10.1021/acsphotonics.5b00651 |
[28] | Yang J H, Sun Q, Ueno K, Shi X, Oshikiri T et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface Plasmon modes. Nat Commun 9, 4858 (2018). doi: 10.1038/s41467-018-07356-x |
[29] | Shi J W, Lin M H, Chen I T, Estakhri N M, Zhang X Q et al. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface Plasmon polariton. Nat Commun 8, 35 (2017). doi: 10.1038/s41467-017-00048-y |
[30] | Wang M S, Li W, Scarabelli L, Rajeeva B B, Terrones M et al. Plasmon-trion and Plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale 9, 13947-13955 (2017). doi: 10.1039/C7NR03909C |
[31] | Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun 7, 11283 (2016). doi: 10.1038/ncomms11283 |
[32] | Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F F et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl Phys Lett 104, 031112 (2014). doi: 10.1063/1.4862745 |
[33] | Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett 15, 2700-2704 (2015). doi: 10.1021/acs.nanolett.5b00407 |
[34] | Gao W, Lee Y H, Jiang R B, Wang J F, Liu T X et al. Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape-controlled Ag nanoantenna. Adv Mater 28, 701-706 (2016). doi: 10.1002/adma.201503905 |
[35] | Janisch C, Song H M, Zhou C J, Lin Z, Elías A L et al. MoS2 monolayers on nanocavities: enhancement in light-matter interaction. 2D Mater 3, 025017 (2016) doi: 10.1088/2053-1583/3/2/025017 |
[36] | Hao Q, Pang J B, Zhang Y, Wang J W, Ma L B et al. Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10 nm gap. Adv Opt Mater 6, 1700984 (2018). doi: 10.1002/adom.v6.2 |
[37] | Sun J W, Hu H T, Zheng D, Zhang D X, Deng Q et al. Light-emitting plexciton: exploiting Plasmon-exciton interaction in the intermediate coupling regime. ACS Nano 12, 10393-10402 (2018). doi: 10.1021/acsnano.8b05880 |
[38] | Lee B, Park J, Han G H, Ee H S, Naylor C H et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett 15, 3646-3653 (2015). doi: 10.1021/acs.nanolett.5b01563 |
[39] | Li B W, Zu S, Zhou J D, Jiang Q, Du B W et al. Single-nanoparticle plasmonic electro-optic modulator based on MoS2 monolayers. ACS Nano 11, 9720-9727 (2017). doi: 10.1021/acsnano.7b05479 |
[40] | Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H et al. Tunable fano resonance and Plasmon-exciton coupling in single Au nanotriangles on monolayer WS2 at room temperature. Adv Mater 30, 1705779 (2018). doi: 10.1002/adma.201705779 |
[41] | Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127-130 (2016). doi: 10.1038/nature17974 |
[42] | Wang S J, Li S L, Chervy T, Shalabney A, Azzini S et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett 16, 4368-4374 (2016). doi: 10.1021/acs.nanolett.6b01475 |
[43] | Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P et al. Manipulating coherent Plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett 17, 3809-3814 (2017). doi: 10.1021/acs.nanolett.7b01176 |
[44] | Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett 17, 4689-4697 (2017). doi: 10.1021/acs.nanolett.7b01344 |
[45] | Lee B, Liu W J, Naylor C H, Park J, Malek S C et al. Electrical tuning of exciton-Plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett 17, 4541-4547 (2017). doi: 10.1021/acs.nanolett.7b02245 |
[46] | Cuadra J, Baranov D G, Wersäll M, Verre R, Antosiewicz T J et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system. Nano Lett 18, 1777-1785 (2018). doi: 10.1021/acs.nanolett.7b04965 |
[47] | Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin A V et al. Observation of hybrid Tamm-Plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat Commun 8, 259 (2017). doi: 10.1038/s41467-017-00155-w |
[48] | Chakraborty B, Gu J, Sun Z, Khatoniar M, Bushati R et al. Control of strong light-matter interaction in monolayer WS2 through electric field gating. Nano Lett 18, 6455-6460 (2018). doi: 10.1021/acs.nanolett.8b02932 |
[49] | Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S et al. Plasmonics for extreme light concentration and manipulation. Nat Mater 9, 193-204 (2010). doi: 10.1038/nmat2630 |
[50] | Chanda D, Shigeta K, Truong T, Lui E, Mihi A et al. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun 2, 479 (2011). doi: 10.1038/ncomms1487 |
[51] | Ameling R, Giessen H. Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett 10, 4394-4398 (2010). doi: 10.1021/nl1019408 |
[52] | Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev 112, 1555-1567 (1958). doi: 10.1103/PhysRev.112.1555 |
[53] | Li Y L, Chernikov A, Zhang X, Rigosi A, Hill H M et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422 |
Supplementary information for Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature |
Characterization of the Ag-WS2 heterostructure. (a) Schematic of the Ag-WS2 heterostructure, where Ag nanodisks were fabricated on WS2 monolayers by EBL. The resonance wavelength of the Ag disk is designed to be resonant with the A-exciton in WS2 monolayers. (b) SEM image of the Ag-WS2 heterostructure. The diameter of Ag disk is 90 nm. Scale bar: 150 nm. (c) Normalized reflectivity spectra of pure WS2 monolayers (red line) and bare Ag nanodisks (blue line). The reflectivity spectrum of WS2 monolayers displays a deep dip at ~610 nm, which is consist with the plasmon resonance of Ag nanodisk with diameter of 90 nm. (d) Reflectivity spectra of the Ag-WS2 heterostructure with the diameter of Ag nanodisk increased from 85 to 95 nm.
Strong coupling in the Ag-WS2 heterostructure with an optical microcavity. (a) Schematic of the optical microcavity with an embedded Ag-WS2 heterostructure. The microcavity is manufactured in a sandwich structure with a 100 nm-thick Ag layer at the bottom, a 185 nmthick MgF2 layer in the middle, and a 20 nm-thick Ag layer on the top. (b) The reflectivity spectral mapping of the Ag-WS2 heterostructure with optical microcavity. Here the diameter of Ag nanodisk is 95 nm. Scale bar: 10 μm. (c) Cross section view of the Ag-WS2 heterostructure with optical microcavity at a tilted angle 52°, scale bar is 150 nm. (d) Normal-incidence reflectivity spectra of the Ag nanodisk with different sizes directly embedded in the optical microcavity. The Ag nanodisks couple with the optical microcavity, which generates two new hybrid modes with the bandwidth smaller than plasmon resonances of bare Ag nanodisks. (e) Normal-incidence reflectivity spectra of the Ag-WS2 heterostructure with optical microcavity. Three different hybridized modes, as the upper branch, middle branch, and lower branch are observed in reflectivity spectra, which are indicated by black solid lines. Vertical gray dashed lines respectively represents the WS2 A-exciton energy and the resonance energy of bare optical microcavity. (f, g) Expanded views of reflectivity spectral features of the heterostructure with the Ag nanodisk diameter of 110 nm (f) and 95 nm (g).
FDTD simulation results. (a) Simulated reflectivity spectra of Ag nanodisk embedded in an optical microcavity. White dashed lines represent the resonance wavelength of the empty microcavity (~650 nm). (b) Normalized reflectivity spectra of Ag-WS2 heterostructure with the optical microcavity. Three different energy branches are emerged because of the strong coupling among the optical microcavity, surface plasmons and A-exciton of WS2 monolayers. (c) Electric field intensity distributions (E/Ein)2 on the xoy plane of Ag nanodisk with and without microcavity. (d) Expanded views of the simulated reflectivity spectral feature for disk size of 110 nm (top line) and 95 nm (bottom line) in (b), respectively.
Anticrossing behavior of the strong plasmon-exciton-cavity coupling. (a) The three-coupled harmonic oscillator model, which includes the surface plasmons, A-exciton, and microcavity mode as three oscillators. (b) Energies of reflectivity dips as a function of the nanodisk diameter extracted from the reflectivity spectrum. Red dots with error bars show energies obtained from the reflectivity spectrum. The horizontal black dashed lines respectively represent the A-exciton and the microcavity resonant energy. The black slanted short-dashed line represents plasmon resonance mode. Three green solid curves correspond to theoretical fits of hybrid branches based on the three-coupled oscillator model. The error bar represents the standard error of a set of measurements. (c) Hopfield coefficients for plasmon, exciton, and microcavity contributions to upper, middle, and lower hybrid states as a function of diameter, calculated using the three-coupled oscillator model, which provide the weighting of each constituent. (d) Reflectivity spectral linewidths of the upper, middle, and lower branch modes as a function of nanodisk diameter.