Yatsui T. Recent improvement of silicon absorption in opto-electric devices. Opto-Electron Adv 2, 190023 (2019). doi: 10.29026/oea.2019.190023
Citation: Yatsui T. Recent improvement of silicon absorption in opto-electric devices. Opto-Electron Adv 2, 190023 (2019). doi: 10.29026/oea.2019.190023

Review Open Access

Recent improvement of silicon absorption in opto-electric devices

More Information
  • Silicon dominates the contemporary electronic industry. However, being an indirect band-gap material, it is a poor absorber of light, which decreases the efficiency of Si-based photodetectors and photovoltaic devices. This review highlights recent studies performed towards improving the optical absorption of Si. A summary of recent theoretical approaches based on the first principle calculation has been provided. It is followed by an overview of recent experimental approaches including scattering, plasmon, hot electron, and near-field effects. The article concludes with a perspective on the future research direction of Si-based photodetectors and photovoltaic devices.
  • 加载中
  • [1] Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D. Solar cell efficiency tables (Version 45). Prog Photovoltaics: Res Appl 23, 1-9 (2015). doi: 10.1002/pip.2573

    CrossRef Google Scholar

    [2] Battaglia C, Cuevas A, De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9, 1552-1576 (2016). doi: 10.1039/C5EE03380B

    CrossRef Google Scholar

    [3] Yatsui T, Okada S, Takemori T, Sato T, Saichi K et al. Enhanced photo-sensitivity in a Si photodetector using a near-field assisted excitation. Commun Phys 2, 62 (2019). doi: 10.1038/s42005-019-0173-1

    CrossRef Google Scholar

    [4] Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12, 1678-1687 (2006). doi: 10.1109/JSTQE.2006.883151

    CrossRef Google Scholar

    [5] Asghari M, Krishnamoorthy A V. Energy-efficient communication. Nat Photonics 5, 268-270 (2011). doi: 10.1038/nphoton.2011.68

    CrossRef Google Scholar

    [6] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics 9, 88-92 (2015). doi: 10.1038/nphoton.2014.321

    CrossRef Google Scholar

    [7] Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater 3, 392-414 (2018). doi: 10.1038/s41578-018-0040-9

    CrossRef Google Scholar

    [8] Kirkengen M, Bergli J, Galperin Y M. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102, 093713 (2007). doi: 10.1063/1.2809368

    CrossRef Google Scholar

    [9] Jung J, Trolle M L, Pedersen K, Pedersen T G. Indirect near-field absorption mediated by localized surface plasmons. Phys Rev B 84, 165447 (2011). doi: 10.1103/PhysRevB.84.165447

    CrossRef Google Scholar

    [10] Yamaguchi M, Nobusada K. Indirect interband transition induced by optical near fields with large wave numbers. Phys Rev B 93, 195111 (2016). doi: 10.1103/PhysRevB.93.195111

    CrossRef Google Scholar

    [11] Martin R M. Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004).

    Google Scholar

    [12] Ashcroft N W, Mermin N D. Solid State Physics (Hold, Rinehart, and Winston, New York, 1976).

    Google Scholar

    [13] Jackson J D. Classical Electrodynamics (Wiley, New York, 1962).

    Google Scholar

    [14] Noda M, Iida K, Yamaguchi M, Yatsui T, Nobusada K. Direct wave-vector excitation in an indirect-band-gap semiconductor of silicon with an optical near-field. Phys Rev Appl 11, 044053 (2019). doi: 10.1103/PhysRevApplied.11.044053

    CrossRef Google Scholar

    [15] Noda M, Ishimura K, Nobusada K, Yabana K, Boku T. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size. J Comput Phys 265, 145-155 (2014). doi: 10.1016/j.jcp.2014.02.006

    CrossRef Google Scholar

    [16] Noda M, Yamaguchi M, Nobusada K. Second harmonic excitation of acetylene by the optical near field generated in a porous material. J Phys Chem C 121, 11687-11692 (2017). doi: 10.1021/acs.jpcc.7b02744

    CrossRef Google Scholar

    [17] Iida K, Noda M, Nobusada K. Development of theoretical approach for describing electronic properties of hetero-interface systems under applied bias voltage. J Chem Phys 146, 084706 (2017). doi: 10.1063/1.4976970

    CrossRef Google Scholar

    [18] Baker-Finch S C, McIntosh K R. Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells. Prog Photovoltaics: Res Appl 21, 960-971 (2013). doi: 10.1002/pip.2186

    CrossRef Google Scholar

    [19] Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T et al. Aligned single-crystalline si nanowire arrays for photovoltaic applications. Small 1, 1062-1067 (2005). doi: 10.1002/smll.200500137

    CrossRef Google Scholar

    [20] Shen M Y, Crouch C H, Carey J E, Mazur E. Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl Phys Lett 85, 5694-5696 (2004). doi: 10.1063/1.1828575

    CrossRef Google Scholar

    [21] Sarnet T, Carey J E, Mazur E. From black silicon to photovoltaic cells, using short pulse lasers. AIP Conf Proc 1464, 219-228 (2012).

    Google Scholar

    [22] Savin H, Repo P, von Gastrow G, Ortega P, Calle E et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol 10, 624-628 (2015). doi: 10.1038/nnano.2015.89

    CrossRef Google Scholar

    [23] Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86, 063106 (2005). doi: 10.1063/1.1855423

    CrossRef Google Scholar

    [24] Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93, 121904 (2008). doi: 10.1063/1.2988288

    CrossRef Google Scholar

    [25] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).

    Google Scholar

    [26] Stuart H R, Hall D G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69, 2327-2329 (1996). doi: 10.1063/1.117513

    CrossRef Google Scholar

    [27] Pillai S, Catchpole K R, Trupke T, Green M A. Surface plasmon enhanced silicon solar cells. J Appl Phys 101, 093105 (2007). doi: 10.1063/1.2734885

    CrossRef Google Scholar

    [28] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93, 191113 (2008). doi: 10.1063/1.3021072

    CrossRef Google Scholar

    [29] Catchpole K R, Polman A. Plasmonic solar cells. Opt Express 16, 21793-21800 (2008). doi: 10.1364/OE.16.021793

    CrossRef Google Scholar

    [30] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9, 239-244 (2010). doi: 10.1038/nmat2635

    CrossRef Google Scholar

    [31] Kelzenberg M D, Turner-Evans D B, Putnam M C, Boettcher S W, Briggs R M et al. High-performance Si microwire photovoltaics. Energy Environ Sci 4, 866-871 (2011). doi: 10.1039/c0ee00549e

    CrossRef Google Scholar

    [32] Grand J, Adam P M, Grimault A S, Vial A, de la Chapelle M L et al. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1, 135-140 (2006). doi: 10.1007/s11468-006-9014-7

    CrossRef Google Scholar

    [33] Wei Q H, Su K H, Durant S, Zhang X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4, 1067-1071 (2004). doi: 10.1021/nl049604h

    CrossRef Google Scholar

    [34] Fan P Y, Chettiar U K, Cao L Y, Afshinmanesh F, Engheta N et al. An invisible metal-semiconductor photodetector. Nat Photonics 6, 380-385 (2012). doi: 10.1038/nphoton.2012.108

    CrossRef Google Scholar

    [35] Wang Y, Sun T Y, Paudel T, Zhang Y, Ren Z F et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett 12, 440-445 (2012). doi: 10.1021/nl203763k

    CrossRef Google Scholar

    [36] Esfandyarpour M, Garnett E C, Cui Y, McGehee M D, Brongersma M L. Metamaterial mirrors in optoelectronic devices. Nat Nanotechnol 9, 542-547 (2014). doi: 10.1038/nnano.2014.117

    CrossRef Google Scholar

    [37] Yatsui T, Nomura W, Ohtsu M. Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption. Nano Lett 5, 2548-2551 (2005). doi: 10.1021/nl051898z

    CrossRef Google Scholar

    [38] Yukutake S, Kawazoe T, Yatsui T, Nomura W, Kitamura K et al. Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process. Appl Phys B 99, 415-422 (2010). doi: 10.1007/s00340-010-3999-5

    CrossRef Google Scholar

    [39] Naik G V, Shalaev V M, Boltasseva A. alternative plasmonic materials: beyond gold and silver. Adv Mater 25, 3264-3294 (2013). doi: 10.1002/adma.201205076

    CrossRef Google Scholar

    [40] Matsui H, Badalawa W, Hasebe T, Furuta S, Nomura W et al. Coupling of Er light emissions to plasmon modes on In2O3: Sn nanoparticle sheets in the near-infrared range. Appl Phys Lett 105, 041903 (2014). doi: 10.1063/1.4892004

    CrossRef Google Scholar

    [41] Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett 11, 2219-2224 (2011). doi: 10.1021/nl200187v

    CrossRef Google Scholar

    [42] Knight M W, Sobhani H, Nordlander P, Halas N J. Photodetection with active optical antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056

    CrossRef Google Scholar

    [43] Sobhani A, Knight M W, Wang Y M, Zheng B, King N S et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4, 1643 (2013). doi: 10.1038/ncomms2642

    CrossRef Google Scholar

    [44] Ho Y L, Huang L C, Delaunay J J. Spectrally selective photocapacitance modulation in plasmonic nanochannels for infrared imaging. Nano Lett 16, 3094-3100 (2016). doi: 10.1021/acs.nanolett.6b00326

    CrossRef Google Scholar

    [45] Pankove J I. Optical Processes in Semiconductors (Dover, New York, 1971).

    Google Scholar

    [46] Loferski J J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys 27, 777-784 (1956). doi: 10.1063/1.1722483

    CrossRef Google Scholar

    [47] Taflove A, Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd ed (Artech House, London, 2005).

    Google Scholar

    [48] Richard S, Aniel F, Fishman G. Energy-band structure of Ge, Si, and GaAs: A thirty-band kp method. Phys Rev B 70, 235204 (2004). doi: 10.1103/PhysRevB.70.235204

    CrossRef Google Scholar

    [49] Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Google Scholar

    [50] Koshida N, Koyama H. Visible electroluminescence from porous silicon. Appl Phys Lett 60, 347-349 (1992). doi: 10.1063/1.106652

    CrossRef Google Scholar

    [51] Zheng J P, Jiao K L, Shen W P, Anderson W A, Kwok H S. Highly sensitive photodetector using porous silicon. Appl Phys Lett 61, 459-461 (1992). doi: 10.1063/1.107884

    CrossRef Google Scholar

    [52] Yatsui T, Ohtsu M. Production of size-controlled Si nanocrystals using self-organized optical near-field chemical etching. Appl Phys Lett 95, 043104 (2009). doi: 10.1063/1.3193536

    CrossRef Google Scholar

    [53] Yatsui T, Nakahira Y, Nakamura Y, Morimoto T, Kato Y et al. Realization of red shift of absorption spectra using optical near-field effect. Nanotechnology 30, 34LT02 (2019). doi: 10.1088/1361-6528/ab2092

    CrossRef Google Scholar

    [54] Iwasa T, Nobusada K. Nonuniform light-matter interaction theory for near-field-induced electron dynamics. Phys Rev A 80, 043409 (2009). doi: 10.1103/PhysRevA.80.043409

    CrossRef Google Scholar

    [55] Yamaguchi M, Nobusada K, Kawazoe T, Yatsui T. Two-photon absorption induced by electric field gradient of optical near-field and its application to photolithography. Appl Phys Lett 106, 191103 (2015). doi: 10.1063/1.4921005

    CrossRef Google Scholar

    [56] Yamaguchi M, Nobusada K, Yatsui T. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation. Phys Rev A 92, 043809 (2015). doi: 10.1103/PhysRevA.92.043809

    CrossRef Google Scholar

    [57] Yamaguchi M, Nobusada K. Large hyperpolarizabilities of the second harmonic generation induced by nonuniform optical near fields. J Phys Chem C 120, 23748-23755 (2016). doi: 10.1021/acs.jpcc.6b08507

    CrossRef Google Scholar

    [58] Fang C Z, Liu Y, Zhang Q F, Han G Q, Gao X et al. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra. Opto-Electron Adv 1, 180004 (2018). doi: 10.29026/oea.2018.180004

    CrossRef Google Scholar

    [59] Lei S D, Ge L H, Najmaei S, George A, Kappera R et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 8, 1263-1272 (2014). doi: 10.1021/nn405036u

    CrossRef Google Scholar

    [60] Li H, Han X, Pan D, Yan X, Wang H W et al. Bandgap engineering of inse single crystals through S substitution. Cryst Growth Des 18, 2899-2904 (2018). doi: 10.1021/acs.cgd.7b01751

    CrossRef Google Scholar

    [61] Hamer M J, Zultak J, Tyurnina A V, Zólyomi V, Terry D et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano 13, 2136-2142 (2019).

    Google Scholar

    [62] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater 27, 6575-6581 (2015). doi: 10.1002/adma.201503340

    CrossRef Google Scholar

    [63] Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett 15, 7307-7313 (2015). doi: 10.1021/acs.nanolett.5b02559

    CrossRef Google Scholar

    [64] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D S et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photonics 2, 226-229 (2008). doi: 10.1038/nphoton.2008.30

    CrossRef Google Scholar

    [65] Chen X P, Zhu H L, Cai J F. High-performance 4H-SiC-based ultraviolet p-i-n photodetector. J Appl Phys 102, 024505 (2007). doi: 10.1063/1.2747213

    CrossRef Google Scholar

    [66] Liao M Y, Wang X, Teraji T, Koizumi S, Koide Y. Light intensity dependence of photocurrent gain in single-crystal diamond detectors. Phys Rev B 81, 033304 (2010). doi: 10.1103/PhysRevB.81.033304

    CrossRef Google Scholar

    [67] Koizumi S, Watanabe K, Hasegawa M, Kanda H. Ultraviolet emission from a diamond pn junction. Science 292, 1899-1901 (2001). doi: 10.1126/science.1060258

    CrossRef Google Scholar

    [68] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M et al. An electrically pumped germanium laser. Opt Express 20, 11316-11320 (2012). doi: 10.1364/OE.20.011316

    CrossRef Google Scholar

    [69] Joshi R K, Shukla S, Saxena S, Lee G H, Sahajwalla V et al. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers. AIP Adv 6, 015315 (2016). doi: 10.1063/1.4941062

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint