Citation: | Yatsui T. Recent improvement of silicon absorption in opto-electric devices. Opto-Electron Adv 2, 190023 (2019). doi: 10.29026/oea.2019.190023 |
[1] | Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D. Solar cell efficiency tables (Version 45). Prog Photovoltaics: Res Appl 23, 1-9 (2015). doi: 10.1002/pip.2573 |
[2] | Battaglia C, Cuevas A, De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9, 1552-1576 (2016). doi: 10.1039/C5EE03380B |
[3] | Yatsui T, Okada S, Takemori T, Sato T, Saichi K et al. Enhanced photo-sensitivity in a Si photodetector using a near-field assisted excitation. Commun Phys 2, 62 (2019). doi: 10.1038/s42005-019-0173-1 |
[4] | Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12, 1678-1687 (2006). doi: 10.1109/JSTQE.2006.883151 |
[5] | Asghari M, Krishnamoorthy A V. Energy-efficient communication. Nat Photonics 5, 268-270 (2011). doi: 10.1038/nphoton.2011.68 |
[6] | Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics 9, 88-92 (2015). doi: 10.1038/nphoton.2014.321 |
[7] | Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater 3, 392-414 (2018). doi: 10.1038/s41578-018-0040-9 |
[8] | Kirkengen M, Bergli J, Galperin Y M. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102, 093713 (2007). doi: 10.1063/1.2809368 |
[9] | Jung J, Trolle M L, Pedersen K, Pedersen T G. Indirect near-field absorption mediated by localized surface plasmons. Phys Rev B 84, 165447 (2011). doi: 10.1103/PhysRevB.84.165447 |
[10] | Yamaguchi M, Nobusada K. Indirect interband transition induced by optical near fields with large wave numbers. Phys Rev B 93, 195111 (2016). doi: 10.1103/PhysRevB.93.195111 |
[11] | Martin R M. Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004). |
[12] | Ashcroft N W, Mermin N D. Solid State Physics (Hold, Rinehart, and Winston, New York, 1976). |
[13] | Jackson J D. Classical Electrodynamics (Wiley, New York, 1962). |
[14] | Noda M, Iida K, Yamaguchi M, Yatsui T, Nobusada K. Direct wave-vector excitation in an indirect-band-gap semiconductor of silicon with an optical near-field. Phys Rev Appl 11, 044053 (2019). doi: 10.1103/PhysRevApplied.11.044053 |
[15] | Noda M, Ishimura K, Nobusada K, Yabana K, Boku T. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size. J Comput Phys 265, 145-155 (2014). doi: 10.1016/j.jcp.2014.02.006 |
[16] | Noda M, Yamaguchi M, Nobusada K. Second harmonic excitation of acetylene by the optical near field generated in a porous material. J Phys Chem C 121, 11687-11692 (2017). doi: 10.1021/acs.jpcc.7b02744 |
[17] | Iida K, Noda M, Nobusada K. Development of theoretical approach for describing electronic properties of hetero-interface systems under applied bias voltage. J Chem Phys 146, 084706 (2017). doi: 10.1063/1.4976970 |
[18] | Baker-Finch S C, McIntosh K R. Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells. Prog Photovoltaics: Res Appl 21, 960-971 (2013). doi: 10.1002/pip.2186 |
[19] | Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T et al. Aligned single-crystalline si nanowire arrays for photovoltaic applications. Small 1, 1062-1067 (2005). doi: 10.1002/smll.200500137 |
[20] | Shen M Y, Crouch C H, Carey J E, Mazur E. Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl Phys Lett 85, 5694-5696 (2004). doi: 10.1063/1.1828575 |
[21] | Sarnet T, Carey J E, Mazur E. From black silicon to photovoltaic cells, using short pulse lasers. AIP Conf Proc 1464, 219-228 (2012). |
[22] | Savin H, Repo P, von Gastrow G, Ortega P, Calle E et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol 10, 624-628 (2015). doi: 10.1038/nnano.2015.89 |
[23] | Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86, 063106 (2005). doi: 10.1063/1.1855423 |
[24] | Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93, 121904 (2008). doi: 10.1063/1.2988288 |
[25] | Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). |
[26] | Stuart H R, Hall D G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69, 2327-2329 (1996). doi: 10.1063/1.117513 |
[27] | Pillai S, Catchpole K R, Trupke T, Green M A. Surface plasmon enhanced silicon solar cells. J Appl Phys 101, 093105 (2007). doi: 10.1063/1.2734885 |
[28] | Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93, 191113 (2008). doi: 10.1063/1.3021072 |
[29] | Catchpole K R, Polman A. Plasmonic solar cells. Opt Express 16, 21793-21800 (2008). doi: 10.1364/OE.16.021793 |
[30] | Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9, 239-244 (2010). doi: 10.1038/nmat2635 |
[31] | Kelzenberg M D, Turner-Evans D B, Putnam M C, Boettcher S W, Briggs R M et al. High-performance Si microwire photovoltaics. Energy Environ Sci 4, 866-871 (2011). doi: 10.1039/c0ee00549e |
[32] | Grand J, Adam P M, Grimault A S, Vial A, de la Chapelle M L et al. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1, 135-140 (2006). doi: 10.1007/s11468-006-9014-7 |
[33] | Wei Q H, Su K H, Durant S, Zhang X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4, 1067-1071 (2004). doi: 10.1021/nl049604h |
[34] | Fan P Y, Chettiar U K, Cao L Y, Afshinmanesh F, Engheta N et al. An invisible metal-semiconductor photodetector. Nat Photonics 6, 380-385 (2012). doi: 10.1038/nphoton.2012.108 |
[35] | Wang Y, Sun T Y, Paudel T, Zhang Y, Ren Z F et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett 12, 440-445 (2012). doi: 10.1021/nl203763k |
[36] | Esfandyarpour M, Garnett E C, Cui Y, McGehee M D, Brongersma M L. Metamaterial mirrors in optoelectronic devices. Nat Nanotechnol 9, 542-547 (2014). doi: 10.1038/nnano.2014.117 |
[37] | Yatsui T, Nomura W, Ohtsu M. Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption. Nano Lett 5, 2548-2551 (2005). doi: 10.1021/nl051898z |
[38] | Yukutake S, Kawazoe T, Yatsui T, Nomura W, Kitamura K et al. Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process. Appl Phys B 99, 415-422 (2010). doi: 10.1007/s00340-010-3999-5 |
[39] | Naik G V, Shalaev V M, Boltasseva A. alternative plasmonic materials: beyond gold and silver. Adv Mater 25, 3264-3294 (2013). doi: 10.1002/adma.201205076 |
[40] | Matsui H, Badalawa W, Hasebe T, Furuta S, Nomura W et al. Coupling of Er light emissions to plasmon modes on In2O3: Sn nanoparticle sheets in the near-infrared range. Appl Phys Lett 105, 041903 (2014). doi: 10.1063/1.4892004 |
[41] | Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett 11, 2219-2224 (2011). doi: 10.1021/nl200187v |
[42] | Knight M W, Sobhani H, Nordlander P, Halas N J. Photodetection with active optical antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056 |
[43] | Sobhani A, Knight M W, Wang Y M, Zheng B, King N S et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4, 1643 (2013). doi: 10.1038/ncomms2642 |
[44] | Ho Y L, Huang L C, Delaunay J J. Spectrally selective photocapacitance modulation in plasmonic nanochannels for infrared imaging. Nano Lett 16, 3094-3100 (2016). doi: 10.1021/acs.nanolett.6b00326 |
[45] | Pankove J I. Optical Processes in Semiconductors (Dover, New York, 1971). |
[46] | Loferski J J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys 27, 777-784 (1956). doi: 10.1063/1.1722483 |
[47] | Taflove A, Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd ed (Artech House, London, 2005). |
[48] | Richard S, Aniel F, Fishman G. Energy-band structure of Ge, Si, and GaAs: A thirty-band k∙p method. Phys Rev B 70, 235204 (2004). doi: 10.1103/PhysRevB.70.235204 |
[49] | Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007). |
[50] | Koshida N, Koyama H. Visible electroluminescence from porous silicon. Appl Phys Lett 60, 347-349 (1992). doi: 10.1063/1.106652 |
[51] | Zheng J P, Jiao K L, Shen W P, Anderson W A, Kwok H S. Highly sensitive photodetector using porous silicon. Appl Phys Lett 61, 459-461 (1992). doi: 10.1063/1.107884 |
[52] | Yatsui T, Ohtsu M. Production of size-controlled Si nanocrystals using self-organized optical near-field chemical etching. Appl Phys Lett 95, 043104 (2009). doi: 10.1063/1.3193536 |
[53] | Yatsui T, Nakahira Y, Nakamura Y, Morimoto T, Kato Y et al. Realization of red shift of absorption spectra using optical near-field effect. Nanotechnology 30, 34LT02 (2019). doi: 10.1088/1361-6528/ab2092 |
[54] | Iwasa T, Nobusada K. Nonuniform light-matter interaction theory for near-field-induced electron dynamics. Phys Rev A 80, 043409 (2009). doi: 10.1103/PhysRevA.80.043409 |
[55] | Yamaguchi M, Nobusada K, Kawazoe T, Yatsui T. Two-photon absorption induced by electric field gradient of optical near-field and its application to photolithography. Appl Phys Lett 106, 191103 (2015). doi: 10.1063/1.4921005 |
[56] | Yamaguchi M, Nobusada K, Yatsui T. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation. Phys Rev A 92, 043809 (2015). doi: 10.1103/PhysRevA.92.043809 |
[57] | Yamaguchi M, Nobusada K. Large hyperpolarizabilities of the second harmonic generation induced by nonuniform optical near fields. J Phys Chem C 120, 23748-23755 (2016). doi: 10.1021/acs.jpcc.6b08507 |
[58] | Fang C Z, Liu Y, Zhang Q F, Han G Q, Gao X et al. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra. Opto-Electron Adv 1, 180004 (2018). doi: 10.29026/oea.2018.180004 |
[59] | Lei S D, Ge L H, Najmaei S, George A, Kappera R et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 8, 1263-1272 (2014). doi: 10.1021/nn405036u |
[60] | Li H, Han X, Pan D, Yan X, Wang H W et al. Bandgap engineering of inse single crystals through S substitution. Cryst Growth Des 18, 2899-2904 (2018). doi: 10.1021/acs.cgd.7b01751 |
[61] | Hamer M J, Zultak J, Tyurnina A V, Zólyomi V, Terry D et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano 13, 2136-2142 (2019). |
[62] | Wang X D, Wang P, Wang J L, Hu W D, Zhou X H et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater 27, 6575-6581 (2015). doi: 10.1002/adma.201503340 |
[63] | Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett 15, 7307-7313 (2015). doi: 10.1021/acs.nanolett.5b02559 |
[64] | Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D S et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photonics 2, 226-229 (2008). doi: 10.1038/nphoton.2008.30 |
[65] | Chen X P, Zhu H L, Cai J F. High-performance 4H-SiC-based ultraviolet p-i-n photodetector. J Appl Phys 102, 024505 (2007). doi: 10.1063/1.2747213 |
[66] | Liao M Y, Wang X, Teraji T, Koizumi S, Koide Y. Light intensity dependence of photocurrent gain in single-crystal diamond detectors. Phys Rev B 81, 033304 (2010). doi: 10.1103/PhysRevB.81.033304 |
[67] | Koizumi S, Watanabe K, Hasegawa M, Kanda H. Ultraviolet emission from a diamond pn junction. Science 292, 1899-1901 (2001). doi: 10.1126/science.1060258 |
[68] | Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M et al. An electrically pumped germanium laser. Opt Express 20, 11316-11320 (2012). doi: 10.1364/OE.20.011316 |
[69] | Joshi R K, Shukla S, Saxena S, Lee G H, Sahajwalla V et al. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers. AIP Adv 6, 015315 (2016). doi: 10.1063/1.4941062 |
Comparison of far- and near-field excitations.
ONF excitation in indirect band-gap structure.
ONF excitation in a realistic Si system.
Schematic of the hot electron driven photocurrent over a Schottky barrier.
Sensitivity of the lateral p–n junction with Au nanoparticles.
Increased rate as a function of the size of Au nanoparticles.