Citation: | Huang H Z, Li J H, Deng J, Ge Y, Liu H G et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031 |
[1] | Hein S, Petzold R, Schoenthaler M, Wetterauer U, Miernik A. Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol 36, 1469-1475 (2018). doi: 10.1007/s00345-018-2303-x |
[2] | Zhang J W, Fai Mak K, Nagl N, Seidel M, Bauer D et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1. Light Sci Appl 7, 17180 (2018). doi: 10.1038/lsa.2017.180 |
[3] | Mizutani K, Ishii S, Aoki M, Iwai H, Otsuka R et al. 2 μm Doppler wind lidar with a Tm:fiber-laser-pumped Ho:YLF laser. Opt Lett 43, 202-205 (2018). doi: 10.1364/OL.43.000202 |
[4] | Schliesser A, Picque N, Hansch T W. Mid-infrared frequency combs. Nat Photonics 6, 440-449 (2012). doi: 10.1038/nphoton.2012.142 |
[5] | Kanai T, Malevich P, Kangaparambil S S, Ishida K, Mizui M et al. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier. Opt Lett 42, 683-686 (2017). doi: 10.1364/OL.42.000683 |
[6] | Hemming A, Richards J, Davidson A, Carmody N, Bennetts S et al. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle. Opt Express 21, 10062-10069 (2013). doi: 10.1364/OE.21.010062 |
[7] | Schunemann P G. New nonlinear crystals for the mid-infrared. In Nonlinear Optics 2017 (Optical Society of America, 2017); http://doi.org/10.1364/NLO.2017.NTu2A.1. |
[8] | Budni P A, Pomeranz L A, Lemons M L, Schunemann P G, Pollak T M et al. 10W Mid-IR holmium pumped ZnGeP2 OPO. In Advanced Solid State Lasers 1998 (Optical Society of America, 1998); http://doi.org/10.1364/ASSL.1998.FC1. |
[9] | Bollig C, Hayward R A, Clarkson W A, Hanna D C, 2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser. Opt Lett 23, 1757-1759 (1998). doi: 10.1364/OL.23.001757 |
[10] | Budni P A, Pomeranz L A, Miller C A, Dygan B K, Lemons M L et al. CW and Q-switched Ho: YAG pumped by Tm: YALO. In Advanced Solid State Lasers 1998 (Optical Society of America, 1998); http://doi.org/10.1364/ASSL.1998.ML4. |
[11] | Chen H, Shen D Y, Zhang J, Yang H, Tang D Y et al. In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm. Opt Lett 36, 1575-1577 (2011). doi: 10.1364/OL.36.001575 |
[12] | Zhang Y X, Gao C Q, Wang Q, Na Q X, Zhang M et al. Single-frequency, injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD. Opt Express 24, 27805-27811 (2016). doi: 10.1364/OE.24.027805 |
[13] | Lamrini S, Koopmann P, Schäfer M, Scholle K, Fuhrberg P. Directly diode-pumped high-energy Ho:YAG oscillator. Opt Lett 37, 515-517 (2012). doi: 10.1364/OL.37.000515 |
[14] | Chernysheva M, Mou C B, Arif R, AlAraimi M, Rümmeli M et al. High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber. Sci Rep 6, 24220 (2016). doi: 10.1038/srep24220 |
[15] | Huang H T, Li M, Liu P, Jin L, Wang H et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett 41, 2700-2703 (2016). doi: 10.1364/OL.41.002700 |
[16] | Zhao T, Wang Y, Chen H, Shen D Y. Graphene passively Q-switched Ho:YAG ceramic laser. Appl Phys B 116, 947-950 (2014). doi: 10.1007/s00340-014-5781-6 |
[17] | Liu X, Yang K, Zhao S, Li T, Qiao W et al. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber. Photonics Res 5, 461-466 (2017). doi: 10.1364/PRJ.5.000461 |
[18] | Yan B Z, Zhang B T, He J L, Nie H K, Li G R et al. Ternary chalcogenide Ta2NiS5 as a saturable absorber for a 1.9 μm passively Q-switched bulk laser. Opt Lett 44, 451-454 (2019). doi: 10.1364/OL.44.000451 |
[19] | Cole B, Goldberg L. Highly efficient passively Q-switched Tm:YAP laser using a Cr:ZnS saturable absorber. Opt Lett 42, 2259-2262 (2017). doi: 10.1364/OL.42.002259 |
[20] | Lan J L, Xu B, Zhang Y Z, Xu H Y, Cai Z P et al. Tunable and passively Q-switched laser operation of Tm:CaYAlO4 between 1848 nm and 1876 nm. Opt Laser Technol 109, 33-38 (2019). doi: 10.1016/j.optlastec.2018.07.069 |
[21] | Li L J, Yang X N, Zhou L, Xie W Q, Wang Y L et al. Active/passive Q-switching operation of 2 μm Tm, Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror. Photonics Res 6, 614-619 (2018). doi: 10.1364/PRJ.6.000614 |
[22] | Schellhorn M, Hirth A, Kieleck C. Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser. Opt Lett 28, 1933-1935 (2003). doi: 10.1364/OL.28.001933 |
[23] | Yang X F, Huang H T, Shen D Y, Zhu H Y, Tang D Y. 2.1 µm Ho:LuAG ceramic laser intracavity pumped by a diode-pumped Tm:YAG laser. Chin Opt Lett 12, 121405 (2014). doi: 10.3788/COL201412.121405 |
[24] | Huang H Z, Huang J H, Ge Y, Zheng H, Weng W et al. 2.1 μm composite Tm/Ho:YAG laser. Opt Lett 43, 1271-1274 (2018). doi: 10.1364/OL.43.001271 |
[25] | Huang H Z, Deng J, Ge Y, Li J H, Huang J H et al. Direct 800 nm diode-pumped Holmium laser with broad pump wavelength range and temperature adaptability. Opt Express 27, 13492-13502 (2019). doi: 10.1364/OE.27.013492 |
[26] | Huang Y J, Huang Y P, Chiang P Y, Liang H C, Su K W et al. High-power passively Q-switched Nd:YVO4 UV laser at 355 nm. Appl Phys B 106, 893-898 (2012). doi: 10.1007/s00340-011-4758-y |
[27] | Tuan P H, Chang C C, Chang F L, Lee C Y, Sung C L et al. Modelling end-pumped passively Q-switched Nd-doped crystal lasers: manifestation by a Nd:YVO4/Cr4+:YAG system with a concave-convex resonator. Opt Express 25, 1710-1722 (2017). doi: 10.1364/OE.25.001710 |
[28] | Chang Y T, Huang Y P, Su K W, Chen Y F. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions. Opt Express 16, 21155-21160 (2008). doi: 10.1364/OE.16.021155 |
[29] | Podlipensky A V, Shcherbitsky V G, Kuleshov N V, Levchenko V I, Yakimovich V N et al. 1W continuous-wave laser generation and excited state absorption measurements in Cr2+: ZnSe. In Advanced Solid State Lasers 2000 (Optical Society of America, 2000); http://doi.org/10.1364/ASSL.2000.MC7. |
[30] | Barnes N P, Amzajerdian F, Reichle D J, Carrion W A, Busch G E et al. Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation. Appl Phys B 103, 57-66 (2011). doi: 10.1007/s00340-010-4195-3 |
Layout of the PQS Tm/Ho composite laser.
(a, b) Evolutions in cavity mode sizes ωc and ωs with the absorbed LD power Pabs at different M1 curvature radii (R1=75 mm, 100 mm and 200 mm); (c) Evolution in key parameter α with Pabs, where the colorful areas denote corresponding unstable regions (green for R1=75 mm, blue for R1=100 mm), αth is (ni/nth)/(ni/nth-1) in Equation (1). Values of the parameters for the above calculation are summarized in Table 1.
Emission cross section of the Tm-doped and Ho-doped regions and transmittance of the Cr:ZnSe SA.
Comparison in pulse trains from the hybrid cavity before (a) and after (b) using the Cr2+:ZnSe.
(a) Average output powers of the free-running Ho laser and PQS Ho laser versus absorbed pump power. (b) Beam profile of the PQS composite Ho laser at the maximum output power of 474 mW (Inset: 3D beam profile at the beam waist).
Wavelength properties of the Tm/Ho composite laser:
Evolutions in the pule repetition frequency and pulse width with the absorbed LD power.
(a) Typical pules train with PRF of 7.14 kHz at the maximum PQS output power. (b) Detail view of the shortest pulse with a width of 145 ns at the maximum output power.