Huang H Z, Li J H, Deng J, Ge Y, Liu H G et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031
Citation: Huang H Z, Li J H, Deng J, Ge Y, Liu H G et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031

Original Article Open Access

Passively Q-switched Tm/Ho composite laser

More Information
  • We explored Q-switching mechanism for the newly proposed Tm/Ho composite laser via developing a hybrid resonator for separating the intra-cavity Tm laser modulated by the saturable absorber (SA). With a Cr:ZnSe SA, successful passively Q-switching process with the maximum average output power of 474 mW and the shortest pulse width of 145 ns were obtained at the pulse repetition frequency of 7.14 kHz, where dual wavelength oscillation in both 2090 nm and 2097 nm was observed. This work provides an effective way for a direct laser diode (LD) pumped Q-switched Ho laser, which is compact and accessible. Furthermore, the current SA could be replaced by the 2D materials with broadband saturable absorption such as topological insulators or transition-metal dichalcogenides for seeking novel PQS lasers.
  • 加载中
  • [1] Hein S, Petzold R, Schoenthaler M, Wetterauer U, Miernik A. Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol 36, 1469-1475 (2018). doi: 10.1007/s00345-018-2303-x

    CrossRef Google Scholar

    [2] Zhang J W, Fai Mak K, Nagl N, Seidel M, Bauer D et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1. Light Sci Appl 7, 17180 (2018). doi: 10.1038/lsa.2017.180

    CrossRef Google Scholar

    [3] Mizutani K, Ishii S, Aoki M, Iwai H, Otsuka R et al. 2 μm Doppler wind lidar with a Tm:fiber-laser-pumped Ho:YLF laser. Opt Lett 43, 202-205 (2018). doi: 10.1364/OL.43.000202

    CrossRef Google Scholar

    [4] Schliesser A, Picque N, Hansch T W. Mid-infrared frequency combs. Nat Photonics 6, 440-449 (2012). doi: 10.1038/nphoton.2012.142

    CrossRef Google Scholar

    [5] Kanai T, Malevich P, Kangaparambil S S, Ishida K, Mizui M et al. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier. Opt Lett 42, 683-686 (2017). doi: 10.1364/OL.42.000683

    CrossRef Google Scholar

    [6] Hemming A, Richards J, Davidson A, Carmody N, Bennetts S et al. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle. Opt Express 21, 10062-10069 (2013). doi: 10.1364/OE.21.010062

    CrossRef Google Scholar

    [7] Schunemann P G. New nonlinear crystals for the mid-infrared. In Nonlinear Optics 2017 (Optical Society of America, 2017); http://doi.org/10.1364/NLO.2017.NTu2A.1.

    Google Scholar

    [8] Budni P A, Pomeranz L A, Lemons M L, Schunemann P G, Pollak T M et al. 10W Mid-IR holmium pumped ZnGeP2 OPO. In Advanced Solid State Lasers 1998 (Optical Society of America, 1998); http://doi.org/10.1364/ASSL.1998.FC1.

    Google Scholar

    [9] Bollig C, Hayward R A, Clarkson W A, Hanna D C, 2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser. Opt Lett 23, 1757-1759 (1998). doi: 10.1364/OL.23.001757

    CrossRef Google Scholar

    [10] Budni P A, Pomeranz L A, Miller C A, Dygan B K, Lemons M L et al. CW and Q-switched Ho: YAG pumped by Tm: YALO. In Advanced Solid State Lasers 1998 (Optical Society of America, 1998); http://doi.org/10.1364/ASSL.1998.ML4.

    Google Scholar

    [11] Chen H, Shen D Y, Zhang J, Yang H, Tang D Y et al. In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm. Opt Lett 36, 1575-1577 (2011). doi: 10.1364/OL.36.001575

    CrossRef Google Scholar

    [12] Zhang Y X, Gao C Q, Wang Q, Na Q X, Zhang M et al. Single-frequency, injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD. Opt Express 24, 27805-27811 (2016). doi: 10.1364/OE.24.027805

    CrossRef Google Scholar

    [13] Lamrini S, Koopmann P, Schäfer M, Scholle K, Fuhrberg P. Directly diode-pumped high-energy Ho:YAG oscillator. Opt Lett 37, 515-517 (2012). doi: 10.1364/OL.37.000515

    CrossRef Google Scholar

    [14] Chernysheva M, Mou C B, Arif R, AlAraimi M, Rümmeli M et al. High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber. Sci Rep 6, 24220 (2016). doi: 10.1038/srep24220

    CrossRef Google Scholar

    [15] Huang H T, Li M, Liu P, Jin L, Wang H et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett 41, 2700-2703 (2016). doi: 10.1364/OL.41.002700

    CrossRef Google Scholar

    [16] Zhao T, Wang Y, Chen H, Shen D Y. Graphene passively Q-switched Ho:YAG ceramic laser. Appl Phys B 116, 947-950 (2014). doi: 10.1007/s00340-014-5781-6

    CrossRef Google Scholar

    [17] Liu X, Yang K, Zhao S, Li T, Qiao W et al. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber. Photonics Res 5, 461-466 (2017). doi: 10.1364/PRJ.5.000461

    CrossRef Google Scholar

    [18] Yan B Z, Zhang B T, He J L, Nie H K, Li G R et al. Ternary chalcogenide Ta2NiS5 as a saturable absorber for a 1.9 μm passively Q-switched bulk laser. Opt Lett 44, 451-454 (2019). doi: 10.1364/OL.44.000451

    CrossRef Google Scholar

    [19] Cole B, Goldberg L. Highly efficient passively Q-switched Tm:YAP laser using a Cr:ZnS saturable absorber. Opt Lett 42, 2259-2262 (2017). doi: 10.1364/OL.42.002259

    CrossRef Google Scholar

    [20] Lan J L, Xu B, Zhang Y Z, Xu H Y, Cai Z P et al. Tunable and passively Q-switched laser operation of Tm:CaYAlO4 between 1848 nm and 1876 nm. Opt Laser Technol 109, 33-38 (2019). doi: 10.1016/j.optlastec.2018.07.069

    CrossRef Google Scholar

    [21] Li L J, Yang X N, Zhou L, Xie W Q, Wang Y L et al. Active/passive Q-switching operation of 2 μm Tm, Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror. Photonics Res 6, 614-619 (2018). doi: 10.1364/PRJ.6.000614

    CrossRef Google Scholar

    [22] Schellhorn M, Hirth A, Kieleck C. Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser. Opt Lett 28, 1933-1935 (2003). doi: 10.1364/OL.28.001933

    CrossRef Google Scholar

    [23] Yang X F, Huang H T, Shen D Y, Zhu H Y, Tang D Y. 2.1 µm Ho:LuAG ceramic laser intracavity pumped by a diode-pumped Tm:YAG laser. Chin Opt Lett 12, 121405 (2014). doi: 10.3788/COL201412.121405

    CrossRef Google Scholar

    [24] Huang H Z, Huang J H, Ge Y, Zheng H, Weng W et al. 2.1 μm composite Tm/Ho:YAG laser. Opt Lett 43, 1271-1274 (2018). doi: 10.1364/OL.43.001271

    CrossRef Google Scholar

    [25] Huang H Z, Deng J, Ge Y, Li J H, Huang J H et al. Direct 800 nm diode-pumped Holmium laser with broad pump wavelength range and temperature adaptability. Opt Express 27, 13492-13502 (2019). doi: 10.1364/OE.27.013492

    CrossRef Google Scholar

    [26] Huang Y J, Huang Y P, Chiang P Y, Liang H C, Su K W et al. High-power passively Q-switched Nd:YVO4 UV laser at 355 nm. Appl Phys B 106, 893-898 (2012). doi: 10.1007/s00340-011-4758-y

    CrossRef Google Scholar

    [27] Tuan P H, Chang C C, Chang F L, Lee C Y, Sung C L et al. Modelling end-pumped passively Q-switched Nd-doped crystal lasers: manifestation by a Nd:YVO4/Cr4+:YAG system with a concave-convex resonator. Opt Express 25, 1710-1722 (2017). doi: 10.1364/OE.25.001710

    CrossRef Google Scholar

    [28] Chang Y T, Huang Y P, Su K W, Chen Y F. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/24I11/2 and 4F3/24I13/2 transitions. Opt Express 16, 21155-21160 (2008). doi: 10.1364/OE.16.021155

    CrossRef Google Scholar

    [29] Podlipensky A V, Shcherbitsky V G, Kuleshov N V, Levchenko V I, Yakimovich V N et al. 1W continuous-wave laser generation and excited state absorption measurements in Cr2+: ZnSe. In Advanced Solid State Lasers 2000 (Optical Society of America, 2000); http://doi.org/10.1364/ASSL.2000.MC7.

    Google Scholar

    [30] Barnes N P, Amzajerdian F, Reichle D J, Carrion W A, Busch G E et al. Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation. Appl Phys B 103, 57-66 (2011). doi: 10.1007/s00340-010-4195-3

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint