Citation: | Zhou B Z, Liu M J, Wen Y W, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020). doi: 10.29026/oea.2020.190043 |
[1] | Kagan C R, Lifshitz E, Sargent E H, Talapin D V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016). doi: 10.1126/science.aac5523 |
[2] | Yang J, Choi M K, Kim D H, Hyeon T. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater 28, 1176-1207 (2016). doi: 10.1002/adma.201502851 |
[3] | Voznyy O, Sutherland B R, Ip A H, Zhitomirsky D, Sargent E H. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat Rev Mater 2, 17026 (2017). doi: 10.1038/natrevmats.2017.26 |
[4] | Lhuillier E, Scarafagio M, Hease P, Nadal B, Aubin H et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett 16, 1282-1286 (2016). doi: 10.1021/acs.nanolett.5b04616 |
[5] | Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies. Nat Photonics 10, 81-92 (2016). doi: 10.1038/nphoton.2015.280 |
[6] | Zheng Z, Gan L, Zhang J B, Zhuge F W, Zhai T Y. An enhanced UV-Vis-NIR an d flexible photodetector based on electrospun ZnO nanowire array/PbS quantum dots film heterostructure. Adv Sci 4, 1600316 (2017). doi: 10.1002/advs.201600316 |
[7] | Yuan M J, Liu M X, Sargent E H. Colloidal quantum dot solids for solution-processed solar cells. Nat Energy 1, 16016 (2016). doi: 10.1038/nenergy.2016.16 |
[8] | Liu M X, Voznyy O, Sabatini R, De Arquer F P G, Munir R et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater 16, 258-263 (2017). doi: 10.1038/nmat4800 |
[9] | Zhang Z L, Chen Z H, Zhang J B, Chen W J, Yang J F et al. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer. Adv Energy Mater 7, 1601773 (2017). doi: 10.1002/aenm.201601773 |
[10] | Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96-99 (2014). doi: 10.1038/nature13829 |
[11] | Pan J, Quan L N, Zhao Y B, Peng W, Murali B et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater 28, 8718-8725 (2016). doi: 10.1002/adma.201600784 |
[12] | Li J H, Xu L M, Wang T, Song J Z, Chen J W et al. 50-Fold EQE Improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29, 1603885 (2017). doi: 10.1002/adma.201603885 |
[13] | Oh S J, Berry N E, Choi J H, Gaulding E A, Lin H et al. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett 14, 1559-1566 (2014). doi: 10.1021/nl404818z |
[14] | Kramer I J, Sargent E H. Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506-8514 (2011). doi: 10.1021/nn203438u |
[15] | Efros A L, Nesbitt D J. Origin and control of blinking in quantum dots. Nat Nanotechnol 11, 661-671 (2016). doi: 10.1038/nnano.2016.140 |
[16] | Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids. Nat Nanotechnol 10, 1013-1026 (2015). doi: 10.1038/nnano.2015.247 |
[17] | Moon H, Lee C, Lee W, Kim J, Chae H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31, 1804294 (2019). doi: 10.1002/adma.201804294 |
[18] | Zhao K, Pan Z X, Zhong X H. Charge recombination control for high efficiency quantum dot sensitized solar cells. J Phys Chem Lett 7, 406-417 (2016). doi: 10.1021/acs.jpclett.5b02153 |
[19] | Boles M A, Ling D S, Hyeon T, Talapin D V. Erratum: the surface science of nanocrystals. Nat Mater 15, 364 (2016). |
[20] | Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett 2, 2071-2083 (2017). doi: 10.1021/acsenergylett.7b00547 |
[21] | Chen O, Zhao J, Chauhan V P, Cui J, Wong C et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12, 445-451 (2013). doi: 10.1038/nmat3539 |
[22] | Reiss P, Protiere M, Li L. Core/Shell semiconductor nanocrystals. Small 5, 154-168 (2009). doi: 10.1002/smll.200800841 |
[23] | Supran G J, Song K W, Hwang G W, Correa R E, Scherer J et al. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv Mater 27, 1437-1442 (2015). doi: 10.1002/adma.201404636 |
[24] | Pu C D, Peng X G. To battle surface traps on CdSe/CdS Core/Shell nanocrystals: shell isolation versus surface treatment. J Am Chem Soc 138, 8134-8142 (2016). doi: 10.1021/jacs.6b02909 |
[25] | Wang R L, Shang Y Q, Kanjanaboos P, Zhou W J, Ning Z J et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci 9, 1130-1143 (2016). doi: 10.1039/C5EE03887A |
[26] | Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10, 765-771 (2011). doi: 10.1038/nmat3118 |
[27] | Shen H B, Cao W R, Shewmon N T, Yang C C, Li L S et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Lett 15, 1211-1216 (2015). doi: 10.1021/nl504328f |
[28] | Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D et al. Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7, 577-582 (2012). doi: 10.1038/nnano.2012.127 |
[29] | Kramer I J, Sargent E H. The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev 114, 863-882 (2014). doi: 10.1021/cr400299t |
[30] | Kim J Y, Voznyy O, Zhitomirsky D, Sargent E H. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater 25, 4986-5010 (2013). doi: 10.1002/adma.201301947 |
[31] | Dai X L, Deng Y Z, Peng X G, Jin Y Z. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater 29, 1607022 (2017). doi: 10.1002/adma.201607022 |
[32] | Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev 116, 10513-10622 (2016). doi: 10.1021/acs.chemrev.6b00169 |
[33] | Zhang D D, Huang T Y, Duan L. Emerging self-emissive technologies for flexible displays. Adv Mater 31, 1902391 (2019). |
[34] | Asundi A S, Raiford J A, Bent S F. Opportunities for atomic layer deposition in emerging energy technologies. ACS Energy Lett 4, 908-925 (2019). doi: 10.1021/acsenergylett.9b00249 |
[35] | Palmstrom A F, Santra P K, Bent S F. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale 7, 12266-12283 (2015). doi: 10.1039/C5NR02080H |
[36] | Johnson R W, Hultqvist A, Bent S F. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17, 236-246 (2014). doi: 10.1016/j.mattod.2014.04.026 |
[37] | Mackus A J M, Merkx M J M, Kessels W M M. From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem Mater 31, 2-12 (2019). doi: 10.1021/acs.chemmater.8b03454 |
[38] | Kumah D P, Ngai J H, Kornblum L. Epitaxial oxides on semiconductors: from fundamentals to new devices. Adv Funct Mater 30. 1901597 (2020). doi: 10.1002/adfm.201901597 |
[39] | Sheng J Z, Han K L, Hong T, Choi W H, Park J S. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. J Semicond 39, 011008 (2018). doi: 10.1088/1674-4926/39/1/011008 |
[40] | Niu W B, Li X L, Karuturi S K, Fam D W, Fan H J et al. Applications of atomic layer deposition in solar cells. Nanotechnology 26, 064001 (2015). doi: 10.1088/0957-4484/26/6/064001 |
[41] | Dasgupta N P, Meng X B, Elam J W, Martinson A B F. Atomic layer deposition of metal sulfide materials. Acc Chem Res 48, 341-348 (2015). doi: 10.1021/ar500360d |
[42] | Bakke J R, Pickrahn K L, Brennan T P, Bent S F. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 3, 3482-3508 (2011). doi: 10.1039/c1nr10349k |
[43] | Koch V M, Barr M K S, Büttner P, Mínguez-Bacho I, Döhler D et al. A solution-based ALD route towards (CH3NH3)(PbI3) perovskite via lead sulfide films. J Mater Chem A 7, 25112-25119 (2019). doi: 10.1039/C9TA09715E |
[44] | Wei H Y, Wu J H, Qiu P, Liu S J, He Y F et al. Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A 7, 25347-25354 (2019). doi: 10.1039/C9TA08929B |
[45] | Geremew A, Qian C, Abelson A, Rumyantsev S, Kargar F et al. Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale 11, 20171-20178 (2019). doi: 10.1039/C9NR06899F |
[46] | Abelson A, Qian C, Salk T, Luan Z Y, Fu K et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat Mater 19, 49-55 (2020). doi: 10.1038/s41563-019-0485-2 |
[47] | Weng Y L, Chen G X, Zhou X T, Yan Q, Guo T L et al. Design and fabrication of bi-functional TiO2/Al2O3 nanolaminates with selected light extraction and reliable moisture vapor barrier performance. Nanotechnology 30, 085702 (2019). doi: 10.1088/1361-6528/aaf4e1 |
[48] | Seo S, Jeong S, Park H, Shin H, Park N G. Atomic layer deposition for efficient and stable perovskite solar cells. Chem Commun 55, 2403-2416 (2019). doi: 10.1039/C8CC09578G |
[49] | Kwon J H, Jeong E G, Jeon Y, Kim D G, Lee S et al. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. ACS Appl Mater Interfaces 11, 3251-3261 (2019). doi: 10.1021/acsami.8b11930 |
[50] | Dasgupta N P, Jung H J, Trejo O, McDowell M T, Hryciw A et al. Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett 11, 934-940 (2011). doi: 10.1021/nl103001h |
[51] | Brennan T P, Ardalan P, Lee H B R, Bakke J R, Ding I K et al. Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Adv Energy Mater 1, 1169-1175 (2011). doi: 10.1002/aenm.201100363 |
[52] | Dasgupta N P, Lee W, Prinz F B. Atomic layer deposition of lead sulfide thin films for quantum confinement. Chem Mater 21, 3973-3978 (2009). doi: 10.1021/cm901228x |
[53] | Kim S H, Sher P H, Hahn Y B, Smith J M. Luminescence from single CdSe nanocrystals embedded in ZnO thin films using atomic layer deposition. Nanotechnology 19, 365202 (2008). doi: 10.1088/0957-4484/19/36/365202 |
[54] | Pourret A, Guyot-Sionnest P, Elam J W. Atomic layer deposition of ZnO in quantum dot thin films. Adv Mater 21, 232-235 (2009). doi: 10.1002/adma.200801313 |
[55] | Liu Y, Gibbs M, Perkins C L, Tolentino J, Zarghami M H et al. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Lett 11, 5349-5355 (2011). doi: 10.1021/nl2028848 |
[56] | Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J et al. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv Energy Mater 3, 917-922 (2013). doi: 10.1002/aenm.201201083 |
[57] | Cate S T, Liu Y, Sandeep C S S, Kinge S, Houtepen A J et al. Activating carrier multiplication in PbSe quantum dot solids by infilling with atomic layer deposition. J Phys Chem Lett 4, 1766-1770 (2013). doi: 10.1021/jz4007492 |
[58] | Thimsen E, Johnson M, Zhang X, Wagner A J, Mkhoyan K A et al. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nat Commun 5, 5822 (2014). doi: 10.1038/ncomms6822 |
[59] | Devloo-Casier K, Geiregat P, Ludwig K F, Van Stiphout K, Vantomme A et al. A case study of ALD encapsulation of quantum dots: embedding supported CdSe/CdS/ZnS quantum dots in a ZnO matrix. J Phys Chem C 120, 18039-18045 (2016). doi: 10.1021/acs.jpcc.6b04398 |
[60] | Yun H S, Noh K, Kim J, Noh S H, Kim G H et al. CsPbBr3 perovskite quantum dot light‐emitting diodes using atomic layer deposited Al2O3 and ZnO interlayers. Phys Status Solidi RRL 14, 1900573 (2020). doi: 10.1002/pssr.201900573 |
[61] | Yoon S H, Gwak D, Kim H H, Woo H J, Cho J et al. Insertion of an inorganic barrier layer as a method of improving the performance of quantum dot light-emitting diodes. ACS Photonics 6, 743-748 (2019). doi: 10.1021/acsphotonics.8b01672 |
[62] | Kuhs J, Werbrouck A, Zawacka N, Drijvers E, Smet P F et al. In situ photoluminescence of colloidal quantum dots during gas exposure—the role of water and reactive atomic layer deposition precursors. ACS Appl Mater Interfaces 11, 26277-26287 (2019). doi: 10.1021/acsami.9b08259 |
[63] | Jin H, Moon H, Lee W, Hwangbo H, Yong S H et al. Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers. RSC Adv 9, 11634-11640 (2019). doi: 10.1039/C9RA00145J |
[64] | Guo T L, Bose R, Zhou X H, Gartstein Y N, Yang H Z et al. Delayed photoluminescence and modified blinking statistics in alumina-encapsulated zero-dimensional inorganic perovskite nanocrystals. J Phys Chem Lett 10, 6780-6787 (2019). doi: 10.1021/acs.jpclett.9b02594 |
[65] | Xiang Q Y, Zhou B Z, Cao K, Wen Y W, Li Y et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition. Chem Mater 30, 8486-8494 (2018). doi: 10.1021/acs.chemmater.8b03096 |
[66] | Palei M, Caligiuri V, Kudera S, Krahne R. Robust and bright photoluminescence from colloidal nanocrystal/Al2O3 composite films fabricated by atomic layer deposition. ACS Appl Mater Interfaces 10, 22356-22362 (2018). doi: 10.1021/acsami.8b03769 |
[67] | Mahmoud N, Walravens W, Kuhs J, Detavernier C, Hens Z et al. Micro-transfer-printing of Al2O3-capped short-wave-infrared PbS quantum dot photoconductors. ACS Appl Nano Mater 2, 299-306 (2018). |
[68] | Ji W Y, Shen H B, Zhang H, Kang Z H, Zhang H Z. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. Nanoscale 10, 11103-11109 (2018). doi: 10.1039/C8NR01460D |
[69] | Bose R, Dangerfield A, Rupich S M, Guo T L, Zheng Y Z et al. Engineering multilayered nanocrystal solids with enhanced optical properties using metal oxides for photonic applications. ACS Appl Nano Mater 1, 6782-6789 (2018). doi: 10.1021/acsanm.8b01577 |
[70] | Loiudice A, Saris S, Oveisi E, Alexander D T L, Buonsanti R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed 56, 10696-10701 (2017). doi: 10.1002/anie.201703703 |
[71] | Li Z W. Enhanced performance of quantum dots light-emitting diodes: the case of Al2O3 electron blocking layer. Vacuum 137, 38-41 (2017). doi: 10.1016/j.vacuum.2016.12.017 |
[72] | Zeng M, Peng X G, Liao J J, Wang G Z, Li Y F et al. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition. Phys Chem Chem Phys 18, 17404-17413 (2016). doi: 10.1039/C6CP01299J |
[73] | Yin B, Sadtler B, Berezin M Y, Thimsen E. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition. Chem Commun 52, 11127-11130 (2016). doi: 10.1039/C6CC05090E |
[74] | Valdesueiro D, Prabhu M K, Guerra-Nunez C, Sandeep C S S, Kinge S et al. Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature. J Phys Chem C 120, 4266-4275 (2016). doi: 10.1021/acs.jpcc.5b11653 |
[75] | Li G R, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater 28, 3528-3534 (2016). doi: 10.1002/adma.201600064 |
[76] | Ephraim J, Lanigan D, Staller C, Milliron D J, Thimsen E. Transparent conductive oxide nanocrystals coated with insulators by atomic layer deposition. Chem Mater 28, 5549-5553 (2016). doi: 10.1021/acs.chemmater.6b02414 |
[77] | Cheng C Y, Mao M H. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition. J Appl Phys 120, 083103 (2016). doi: 10.1063/1.4961425 |
[78] | So H M, Choi H, Shim H C, Lee S M, Jeong S et al. Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors. Appl Phys Lett 106, 093507 (2015). doi: 10.1063/1.4914304 |
[79] | Sayevich V, Gaponik N, Plötner M, Kruszynska M, Gemming T et al. Stable dispersion of iodide-capped pbse quantum dots for high-performance low-temperature processed electronics and optoelectronics. Chem Mater 27, 4328-4337 (2015). doi: 10.1021/acs.chemmater.5b00793 |
[80] | Zhang J, Tolentino J, Smith E R, Zhang J B, Beard M C et al. Carrier transport in PbS and PbSe QD films measured by photoluminescence quenching. J Phys Chem C 118, 16228-16235 (2014). doi: 10.1021/jp504240u |
[81] | Hu C, Gassenq A, Justo Y, Devloo-Casier K, Chen H T et al. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition. Appl Phys Lett 105, 171110 (2014). doi: 10.1063/1.4900930 |
[82] | Roelofs K E, Brennan T P, Dominguez J C, Bailie C D, Margulis G Y et al. Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J Phys Chem C 117, 5584-5592 (2013). doi: 10.1021/jp311846r |
[83] | Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1. Nano Lett 13, 1578-1587 (2013). doi: 10.1021/nl304753n |
[84] | Ip A H, Labelle A J, Sargent E H. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier. Appl Phys Lett 103, 263905 (2013). doi: 10.1063/1.4858135 |
[85] | Brennan T P, Trejo O, Roelofs K E, Xu J, Prinz F B et al. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J Mater Chem A 1, 7566-7575 (2013). doi: 10.1039/c3ta10903h |
[86] | Kim D K, Lai Y M, Diroll B T, Murray C B, Kagan C R. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat Commun 3, 1216 (2012). doi: 10.1038/ncomms2218 |
[87] | Likovich E M, Jaramillo R, Russell K J, Ramanathan S, Narayanamurti V. High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes. Adv Mater 23, 4521-4525 (2011). doi: 10.1002/adma.201101782 |
[88] | Lambert K, Dendooven J, Detavernier C, Hens Z. Embedding quantum dot monolayers in Al2O3 using atomic layer deposition. Chem Mater 23, 126-128 (2011). doi: 10.1021/cm1027354 |
[89] | Ihly R, Tolentino J, Liu Y, Gibbs M, Law M. The photothermal stability of PbS quantum dot solids. ACS Nano 5, 8175-8186 (2011). doi: 10.1021/nn2033117 |
[90] | Choi J H, Oh S J, Lai Y M, Kim D K, Zhao T S et al. In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air. ACS Nano 7, 8275-8283 (2013). doi: 10.1021/nn403752d |
[91] | Di Stasio F, Ramiro I, Bi Y, Christodoulou S, Stavrinadis A et al. High-efficiency light-emitting diodes based on formamidinium lead bromide nanocrystals and solution processed transport layers. Chem Mater 30, 6231-6235 (2018). doi: 10.1021/acs.chemmater.8b03079 |
[92] | Yu K H, Lin X, Lu G H, Wen Z H, Yuan C et al. Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating. RSC Adv 2, 7843-7848 (2012). doi: 10.1039/c2ra20979a |
[93] | Lin X, Yu K H, Lu G H, Chen J H, Yuan C. Atomic layer deposition of TiO2 interfacial layer for enhancing performance of quantum dot and dye co-sensitized solar cells. J Phys D Appl Phys 46, 024004 (2013). doi: 10.1088/0022-3727/46/2/024004 |
[94] | Xie Z, Liu X X, Wang W P, Wang X J, Liu C et al. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy 11, 400-408 (2015). doi: 10.1016/j.nanoen.2014.11.024 |
[95] | Wei H Y, Qiu P, Peng M Z, Wu Q X, Liu S J et al. Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating. Appl Surf Sci 476, 608-614 (2019). doi: 10.1016/j.apsusc.2019.01.144 |
[96] | Zhang X Y, Lu M, Zhang Y, Wu H, Shen X Y et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures. ACS Cent Sci 4, 1352-1359 (2018). doi: 10.1021/acscentsci.8b00386 |
[97] | Liu X, Zhang X S, Li L, Xu J P, Yu S L et al. Stable luminescence of CsPbBr3/nCdS Core/Shell Perovskite quantum dots with Al self-passivation layer modification. ACS Appl Mater Interfaces 11, 40923-40931 (2019). doi: 10.1021/acsami.9b14967 |
[98] | Zu Y Q, Dai J F, Li L, Yuan F, Chen X et al. Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering. J Mater Chem A 7, 26116-26122 (2019). doi: 10.1039/C9TA08421E |
[99] | Li X M, Wu Y, Zhang S L, Cai B, Gu Y et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26, 2435-2445 (2016). doi: 10.1002/adfm.201600109 |
[100] | Shan Q S, Song J Z, Zou Y S, Li J H, Xu L M et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017). doi: 10.1002/smll.201701770 |
[101] | Van Le Q, Hong K, Jang H W, Kim S Y. Halide perovskite quantum dots for light‐emitting diodes: properties, synthesis, applications, and outlooks. Adv Electron Mater 4, 1800335 (2018). doi: 10.1002/aelm.201800335 |
[102] | Yang D D, Li X M, Zeng H B. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Adv Mater Interfaces 5, 1701662 (2018). doi: 10.1002/admi.201701662 |
[103] | Loiudice A, Strach M, Saris S, Chernyshov D, Buonsanti R. Universal oxide shell growth enables in situ structural studies of perovskite nanocrystals during the anion exchange reaction. J Am Chem Soc 141, 8254-8263 (2019). |
[104] | Zhou B, Wang Z, Geng S, Li Y, Wang K, et al. Interface Engineering of CsPbBr3 Nanocrystal Light-Emitting Diodes via Atomic Layer Deposition. Phys Status Solidi RRL 14, 2000083 (2020). doi: 10.1002/pssr.202000083 |
[105] | Lv W Z, Li L, Xu M C, Hong J X, Tang X X et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv Mater 31, 1900682 (2019). doi: 10.1002/adma.201900682 |
[106] | Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 55, 7924-7929 (2016). doi: 10.1002/anie.201603698 |
[107] | Liu Z Q, Zhang Y Q, Fan Y, Chen Z Q, Tang Z B et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl Mater Interfaces 10, 13053-13061 (2018). doi: 10.1021/acsami.7b18964 |
[108] | Hines D A, Kamat P V. Recent advances in quantum dot surface chemistry. ACS Appl Mater Interfaces 6, 3041-3057 (2014). doi: 10.1021/am405196u |
[109] | De Arquer F P G, Armin A, Meredith P, Sargent E H. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2, 16100 (2017). doi: 10.1038/natrevmats.2016.100 |
[110] | Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V et al. Colloidal quantum dots for optoelectronics. J Mater Chem A 5, 13252-13275 (2017). doi: 10.1039/C7TA02076G |
[111] | Guyot-Sionnest P. Electrical transport in colloidal quantum dot films. J Phys Chem Lett 3, 1169-1175 (2012). doi: 10.1021/jz300048y |
[112] | Liang X Y, Bai S, Wang X, Dai X L, Gao F et al. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chem Soc Rev 46, 1730-1759 (2017). doi: 10.1039/C6CS00122J |
[113] | Beard M C, Luther J M, Nozik A J. The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9, 951-954 (2014). doi: 10.1038/nnano.2014.292 |
[114] | Wei H Y, Li D M, Zheng X H, Meng Q B. Recent progress of colloidal quantum dot based solar cells. Chin Phys B 27, 018808 (2018). doi: 10.1088/1674-1056/27/1/018808 |
[115] | Du Z L, Artemyev M, Wang J, Tang J G. Performance improvement strategies for quantum dot-sensitized solar cells: a review. J Mater Chem A 7, 2464-2489 (2019). doi: 10.1039/C8TA11483H |
[116] | Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2, 17009 (2017). doi: 10.1038/nenergy.2017.9 |
[117] | Li W Z, Li J L, Wang L D, Niu G D, Gao R D et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J Mater Chem A 1, 11735-11740 (2013). doi: 10.1039/c3ta12240a |
[118] | Koushik D, Verhees W J H, Kuang Y H, Veenstra S, Zhang D et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ Sci 10, 91-100 (2017). doi: 10.1039/C6EE02687G |
[119] | Lv Y F, Xu P H, Ren G Q, Chen F, Nan H R et al. Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS Appl Mater Interfaces 10, 23928-23937 (2018). doi: 10.1021/acsami.8b07346 |
[120] | Seo S, Jeong S, Bae C, Park N G, Shin H. Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈500 h) Stability at 85 ℃ under continuous 1 sun illumination in ambient air. Adv Mater 30, 1801010 (2018). doi: 10.1002/adma.201801010 |
[121] | Kim Y H, Heo J S, Kim T H, Park S, Yoon M H et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128-132 (2012). doi: 10.1038/nature11434 |
[122] | Zhao B D, Lee L C, Yang L, Pearson A J, Lu H Z et al. In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells. ACS Appl Mater Interfaces 10, 41849-41854 (2018). doi: 10.1021/acsami.8b15503 |
[123] | Li G J, Jiang Y B, Deng S B, Tam A, Xu P et al. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv Sci 4, 1700463 (2017). doi: 10.1002/advs.201700463 |
[124] | Palmstrom A F, Raiford J A, Prasanna R, Bush K A, Sponseller M et al. Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv Energy Mater 8, 1800591 (2018). doi: 10.1002/aenm.201800591 |
[125] | Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H et al. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes. ACS Appl Mater Interfaces 8, 31385-31391 (2016). doi: 10.1021/acsami.6b09246 |
[126] | Yang Z Y, Albrow-Owen T, Cui H X, Alexander-Webber J, Gu F X et al. Single-nanowire spectrometers. Science 365, 1017-1020 (2019). doi: 10.1126/science.aax8814 |
[127] | Wang J W, Sciarrino F, Laing A, Thompson M G. Integrated photonic quantum technologies. Nat Photonics 14, 273-284 (2020). doi: 10.1038/s41566-019-0532-1 |
[128] | Geiregat P, Van Thourhout D, Hens Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater 11, 41 (2019). doi: 10.1038/s41427-019-0141-y |
Section 4 Experiments to demonstrate the virtual image | |
Section 6 Real-time imaging results |
The corresponding challenges of QDs.
(a) PLQY value variation of QDs with TMA treatment time75. (b) Reaction schematic of TMA with QDs surface75. (c) PL lifetimes of QDs thin films before and after 20 cycles of alumina deposition69. (d) XPS spectra of Zn for QDs thin film before and after one cycle of alumina and Al after one cycle of alumina69. Figure reproduced from: (a, b) ref.75, Creative Commons Attribution 2.0 International License; (c, d) ref.69, American Chemical Society.
(a) Cross-sectional TEM structure characterization and optical absorption spectra stability test before and after ALD treatment74. (b) EELS color-coded elemental intensity maps of Al and Br, CsPbBr3 QD/AlOx nanocomposites PL properties over 45 days of storage in ambient conditions and after 1 h of soaking in water70. Figure reproduced from: (a) ref.74, American Chemical Society; (b) ref.70, John Wiley and Sons.
(a) Schematic of device architecture, FET electron mobility (black) and threshold voltage (blue) as a function of time stored and operated in air86. (b) TEM image of device structure and the relative power conversion efficiency (PCE) over time84. Figure reproduced from: (a) ref.86, American Chemical Society; (b) ref.84, AIP Publishing.
(a) FTIR spectra of ALD-coated and uncoated thin films comprised of ZnO nanocrystals76. (b) XPS scans for Pb 4f and Al 2p of the AlxOy-PbS film78. (c) Ligands exchange and ALD infilling schematic resulting in barrier width and height reduce55. Figure reproduced from: (a) ref.76, American Chemical Society; (b) ref.78, AIP Publishing; (c) ref.55, American Chemical Society.
(a) Schematic of barrier layer configurations available in quantum dot-sensitized solar cells. Comparison of device efficiency and dark current onset for TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations under 1 sun of illumination with varying ALD cycles of Al2O382. (b) Band energy level diagram of each material in QLED. Current density of electron only device without and with Al2O3 interlayers, and hole only device. Device lifetime of QLEDs without and with Al2O3 interlayer63. Figure reproduced from: (a) ref.82, American Chemical Society; (b) ref.63, Creative Commons Attribution 3.0 International License.
(a) Schematic diagram of the ALD interface passivating mechanism61. (b) EDS mappings obtained after device operation for QLEDs without and with an Al2O3 barrier layer61. Figure reproduced from ref.61, American Chemical Society.