Ma W Z, Zhao D S, Liu R M, Wang T S, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020). doi: 10.29026/oea.2020.200001
Citation: Ma W Z, Zhao D S, Liu R M, Wang T S, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020). doi: 10.29026/oea.2020.200001

Original Article Open Access

Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity

More Information
  • We integrally demonstrate 2 μm mode-locked pulses performances in all-fiber net anomalous dispersion cavity. Stable mode-locking operations with the center wavelength around 1950-1980 nm can be achieved by using the nonlinear polarization rotation structure and properly designing the dispersion management component. Conventional soliton is firstly obtained with a total anomalous dispersion cavity. Due to the contribution of commercial ultra-high numerical aperture fibers, net dispersion is reduced to -0.077 ps2. So that stretched pulse with 19.4 nm optical bandwidth is obtained and the de-chirped pulse-width can reach 312 fs using extra-cavity compression. Under pump power greater than 890 mW, stretched pulse can evolve into noise-like pulse with 41.3 nm bandwidth. The envelope and peak of such broadband pulse can be compressed with up to 2.2 ps and 145 fs, respectively. The single pulse energy of largely chirped stretched and noise-like pulse can reach 1.785 nJ and 1.53 nJ, respectively. Furthermore, extra-cavity compression can also contribute to a significant increase of peak power.
  • 加载中
  • [1] Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 μm. Lasers Surg Med 37, 53-58 (2005). doi: 10.1002/lsm.20196

    CrossRef Google Scholar

    [2] Tunc B, Gulsoy M. Tm: fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain. Lasers Surg Med 45, 48-56 (2013). doi: 10.1002/lsm.22114

    CrossRef Google Scholar

    [3] De Young R J, Barnes N P. Profiling atmospheric water vapor using a fiber laser lidar system. Appl Opt 49, 562-567 (2010). doi: 10.1364/AO.49.000562

    CrossRef Google Scholar

    [4] Leindecker N, Marandi A, Byer R L, Vodopyanov K L, Jiang J et al. Schunemann. Octave-spanning ultrafast OPO with 2.6-6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt Express 20, 7046-7053 (2012). doi: 10.1364/OE.20.007046

    CrossRef Google Scholar

    [5] Lin P, Wang T S, Ma W Z, Chen J D, Jiang H L. Propagation characteristics of 2.07 μm fiber laser in weak turbulence condition. Opto-Electron Eng, 47, 190588 (2020)

    Google Scholar

    [6] Eckerle M, Kieleck C, Świderski J, Jackson S D, Mazé G et al. Actively Q -switched and mode-locked Tm3+-doped silicate 2 μ m fiber laser for supercontinuum generation in fluoride fiber. Opt Lett 37, 512-514 (2012). doi: 10.1364/OL.37.000512

    CrossRef Google Scholar

    [7] Wang Q, Chen T, Zhang B, Heberle A P, Chen K P. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes. Opt Lett 36, 3750-3752 (2011). doi: 10.1364/OL.36.003750

    CrossRef Google Scholar

    [8] Ma W Z, Wang T S, Zhang Y, Liu P, Su Y W et al. Widely tunable 2 μm continuous-wave and mode-locked fiber laser. Appl Opt 56, 3342-3346 (2017). doi: 10.1364/AO.56.003342

    CrossRef Google Scholar

    [9] Wang X F, Peng X L, Zhang J H. Multistate passively mode-locked thulium-doped fiber laser with nonlinear amplifying loop mirror. Appl Opt 57, 3410-3414 (2018). doi: 10.1364/AO.57.003410

    CrossRef Google Scholar

    [10] Liu S, Yan F P, Zhang L N, Han W G, Bai Z Y et al. Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion. J Opt 18, 015508 (2016). doi: 10.1088/2040-8978/18/1/015508

    CrossRef Google Scholar

    [11] Li H H, Wang Z K, Li C, Zhang J J, Xu S Q. Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber. Opt Express 25, 26546-26553 (2017). doi: 10.1364/OE.25.026546

    CrossRef Google Scholar

    [12] Li N, Liu M Y, Gao X J, Zhang L, Jia Z X et al. All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter. Laser Phys Lett 13, 075103 (2016). doi: 10.1088/1612-2011/13/7/075103

    CrossRef Google Scholar

    [13] Ma W Z, Wang T Su, Wang F R, Wang C B, Zhang L et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm. Opto-Electron Eng, 45, 170662(2018)

    Google Scholar

    [14] Yin K, Zhang B, Li L, Jiang T, Zhou X F et al. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photonics Res 3, 72-76 (2015). doi: 10.1364/PRJ.3.000072

    CrossRef Google Scholar

    [15] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt Lett 40, 3885-3888 (2015). doi: 10.1364/OL.40.003885

    CrossRef Google Scholar

    [16] Gaida C, Gebhardt M, Heuermann T, Stutzki F, Jauregui C et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. 43, 5853-5856 (2018). doi: 10.1364/OL.43.005853

    CrossRef Google Scholar

    [17] Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion. Opt Express 18, 18918-18988 (2010).

    Google Scholar

    [18] Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D. Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier. Opt Lett 35, 2991-2993 (2010). doi: 10.1364/OL.35.002991

    CrossRef Google Scholar

    [19] Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser. Opt Lett 37, 1014-1016 (2012). doi: 10.1364/OL.37.001014

    CrossRef Google Scholar

    [20] Wienke A, Haxsen F, Wandt D, Morgner U, Neumann J et al. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management. Opt Lett 37, 2466-2468 (2012). doi: 10.1364/OL.37.002466

    CrossRef Google Scholar

    [21] Wang Q Q, Chen T, Li M S, Zhang B T, Lu Y F et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes. Appl Phys Lett 103, 011103 (2013). doi: 10.1063/1.4813108

    CrossRef Google Scholar

    [22] Li H H, Liu J, Cheng Z C, Xu J, Tan F Z et al. Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers. Opt Express 23, 6292-6303 (2015). doi: 10.1364/OE.23.006292

    CrossRef Google Scholar

    [23] Sobon G, Sotor J, Martynkien T, Abramski K M. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser. Opt Express 24, 6156-6161 (2016). doi: 10.1364/OE.24.006156

    CrossRef Google Scholar

    [24] Liu H, Kieu K, Lefrancois S, Renninger W H, Chong A et al. Tm fiber laser mode-locked at large normal dispersion. In CLEO: 2011-Laser Science to Photonic Applications, 1-2 (IEEE, 2011); http://doi.org/10.1364/CLEO_SI.2011.CMK1.

    Google Scholar

    [25] Sun B, Luo J Q, Zhang Y, Wang Q J, Yu X. 65-fs pulses at 2 μ m in a compact Tm-doped all-fiber laser by dispersion and nonliearity management. IEEE Photonics Technol Lett 30, 303-306 (2018). doi: 10.1109/LPT.2017.2780284

    CrossRef Google Scholar

    [26] Pawliszewska M, Martynkien T, Przewłoka A, Sotor J. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt Lett 43, 38-41 (2018). doi: 10.1364/OL.43.000038

    CrossRef Google Scholar

    [27] Kadel R, Washburn B R. An all-fiber stretched-pulse Thulium/Holmium co-doped ultrafast Laser. In Frontiers in Optics 2013 (OSA, 2013); http://doi.org/10.1364/FIO.2013.FTh3B.5.

    Google Scholar

    [28] Zhao J Q, Li L, Zhao L M, Tang D Y, Shen D Y. Cavity-birefringence-dependent h-shaped pulse generation in a thulium-holmium-doped fiber laser. Opt Lett 43, 247-250 (2018). doi: 10.1364/OL.43.000247

    CrossRef Google Scholar

    [29] Kadel R, Washburn B R. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser. Appl Opt 54, 746-750 (2015). doi: 10.1364/AO.54.000746

    CrossRef Google Scholar

    [30] Ciąćka P, Rampur A, Heidt A, Feurer T, Klimczak M. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. J Opt Soc Am B 35, 1301-1307 (2018). doi: 10.1364/JOSAB.35.001301

    CrossRef Google Scholar

    [31] Tang D Y, Zhao L M, Zhao B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt Express 13, 2289-2294 (2005). doi: 10.1364/OPEX.13.002289

    CrossRef Google Scholar

    [32] Zhao L M, Tang D Y. Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Appl Phys B, 83, 553-557 (2006). doi: 10.1007/s00340-006-2179-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint