Citation: | Zhang S L, Liu L W, Ren S, Li Z L, Zhao Y H et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003 |
[1] | Shen Y R. The Principles of Nonlinear Optics (Wiley Press, New York, 1984). |
[2] | Boyd R W. Nonlinear Optics (Academic Press, New York, 2007). |
[3] | Agrawal G P. Applications of Nonlinear Fiber Optics (Academic Press, London, 2001). |
[4] | Saleh B E A, Teich M C. Fundamentals of Photonics 2nd ed (Wiley, Hoboken, 2007). |
[5] | Garmire E. Nonlinear optics in daily life. Opt Exp 21, 30532–30544 (2013). doi: 10.1364/OE.21.030532 |
[6] | Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto Electron Adv 1, 170001 (2018). |
[7] | Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018). |
[8] | Franken P A, Hill A E, Peters C W, Weinreich G.Generation of optical harmonics. Phys Rev Lett 7, 118–119 (1961). doi: 10.1103/PhysRevLett.7.118 |
[9] | Maiman T H. Optical and microwave-optical experiments in ruby. Phys Rev Lett 4, 564–566 (1960). doi: 10.1103/PhysRevLett.4.564 |
[10] | Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005). |
[11] | Myers L E, Bosenberg W R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J Quantum Electron 33, 1663–1672 (1997). doi: 10.1109/3.631262 |
[12] | Chen Q, Risk W P. Periodic poling of KTiOPO4 using an applied electric field. Electron Lett 30, 1516–1517 (1994). doi: 10.1049/el:19941019 |
[13] | Karlsson H, Laurell F, Henriksson P, Arvidsson G.Frequency doubling in periodically poled RbTiOAsO4. Electron Lett 32, 556–557 (1996). doi: 10.1049/el:19960402 |
[14] | Mizuuchi K, Yamamoto K. Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3. Opt Lett 21, 107–109 (1996). doi: 10.1364/OL.21.000107 |
[15] | Meyn J P, Fejer M M. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt Lett 22, 1214–1216 (1997). doi: 10.1364/OL.22.001214 |
[16] | Setzler S D, Schunemann P G, Pollak T M, Pomeranz L A, Missey M J. Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series. Washington DC: Optical Society of America, 1999: 676. |
[17] | Meyn J P, Klein M E, Woll D, Wallenstein R, Rytz D.Periodically poled potassium niobate for second-harmonic generation at 463 nm. Opt Lett 24, 1154–1156 (1999). doi: 10.1364/OL.24.001154 |
[18] | Johnson J C, Yan H Q, Schaller R D, Petersen P B, Yang P D et al.Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett 2, 279–283 (2002). doi: 10.1021/nl015686n |
[19] | Nakayama Y, Pauzauskie P J, Radenovic A, Onorato R M, Saykally R J et al.Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007). doi: 10.1038/nature05921 |
[20] | Long J P, Simpkins B S, Rowenhorst D J, Pehrsson P E.Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett 7, 831–836 (2007). doi: 10.1021/nl0624420 |
[21] | Sanatinia R, Swillo M, Anand S. Surface second-harmonic generation from vertical GaP nanopillars. Nano Lett 12, 820–826 (2012). doi: 10.1021/nl203866y |
[22] | Casadei A, Pecora E F, Trevino J, Forestiere C, Rüffer D et al.Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. Nano Lett 14, 2271–2278 (2014). doi: 10.1021/nl404253x |
[23] | Bautista G, Mäkitalo J, Chen Y, Dhaka V, Grasso M et al.Second-harmonic generation imaging of semiconductor nanowires with focused vector beams. Nano Lett 15, 1564–1569 (2015). doi: 10.1021/nl503984b |
[24] | Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K et al.Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014). doi: 10.1126/science.1250564 |
[25] | Zhou X, Cheng J X, Zhou Y B, Cao H, Hong H et al.Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc 137, 7994–7997 (2015). doi: 10.1021/jacs.5b04305 |
[26] | Handelman A, Lavrov S, Kudryavtsev A, Khatchatouriants A, Rosenberg Y et al. Nonlinear optical bioinspired peptide nanostructures. Adv Opt Mater 1, 875–884 (2013). doi: 10.1002/adom.201300282 |
[27] | Semin S, Van Etteger A, Cattaneo L, Amdursky N, Kulyuk L et al.Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes. Small 11, 1156–1160 (2015). doi: 10.1002/smll.201401602 |
[28] | Farrar D, Ren K L, Cheng D, Kim S, Moon W et al.Permanent polarity and piezoelectricity of electrospun α-Helical Poly(α-Amino Acid) Fibers. Adv Mat 23, 3954–3958 (2011). doi: 10.1002/adma.201101733 |
[29] | Zhang H H, Liao Q, Wang X D, Xu Z Z, Fu H B.Self-assembled organic hexagonal micro-prisms with high second harmonic generation efficiency for photonic devices. Nanoscale 7, 10186–10192 (2015). doi: 10.1039/C5NR00365B |
[30] | Gibbs H M, Khitrova G, Peyghambarian N. Nonlinear Photonics (Springer, Berlin, 1990). |
[31] | Philip R, Ravikanth M, Ravindra Kumar G. Studies of third order optical nonlinearity in iron (III) phthalocyanine μ-oxo dimers using picosecond four-wave mixing. Opt Comm 165, 91–97 (1999). doi: 10.1016/S0030-4018(99)00231-X |
[32] | de la Torre G, Vázquez P, Agulló-López, Torres T.Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104, 3723–3750 (2004). doi: 10.1021/cr030206t |
[33] | Senge M O, Fazekas M, Notaras E G A, Blau W J, Zawadzka M et al.Nonlinear optical properties of porphyrins. Adv Mat 19, 2737–2774 (2007). doi: 10.1002/adma.200601850 |
[34] | Xu J, Boyd R W, Fischer G L. Nonlinear optical materials. Reference Module in Materials Science and Materials Engineering, Elsevier (2016). |
[35] | Wang K, Zhou J, Yuan L Y, Tao Y T, Chen J et al.Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire. Nano Lett 12, 833–838 (2012). doi: 10.1021/nl203884j |
[36] | Zhang L C, Wang K, Liu Z, Yang G, Shen G Z et al.Two-photon pumped lasing in a single CdS microwire. Appl Phys Lett 102, 211915 (2013). doi: 10.1063/1.4809537 |
[37] | Zhang C F, Zhang F, Xia T, Kumar N, Hahm J I et al.Low-threshold two-photon pumped ZnO nanowire lasers. Opt Express 17, 7893–7900 (2009). doi: 10.1364/OE.17.007893 |
[38] | Chelnokov E V, Bityurin N.Two-photon pumped random laser in nanocrystalline ZnO. Appl Phy. Lett 89, 171119 (2006). doi: 10.1063/1.2370879 |
[39] | HYPERLINK \l "_bookmark84" Zhang C, Zou C L, Yan Y L, Hao R, Sun F W et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J Am Chem Soc 133, 7276–7279 (2011). doi: 10.1021/ja200549v |
[40] | Yu J C, Cui Y J, Xu H, Yang Y, Wang Z Y et al.Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat Comm 4, 2719 (2013). doi: 10.1038/ncomms3719 |
[41] | Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2, 932–940 (2005). doi: 10.1038/nmeth818 |
[42] | Schenke-Layland K, Riemann I, Damour O, Stock U A, König K.Two-photon microscopes and in vivo multiphoton tomographs-Powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev 58, 878–896 (2006). doi: 10.1016/j.addr.2006.07.004 |
[43] | Miller D R, Jarrett J W, Hassan A M, Dunn A K.Deep tissue imaging with multiphoton fluorescence microscopy. Curr Opin Biomed Eng 4, 32–39 (2017). doi: 10.1016/j.cobme.2017.09.004 |
[44] | Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027 |
[45] | Piston D W, Kirby M S, Cheng H, Lederer W J, Webb W W.Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity. Appl Opt 33, 662–669 (1994). doi: 10.1364/AO.33.000662 |
[46] | Patterson G H, Knobel S M, Arkhammar P, Thastrup O, Piston D W.Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet β cells. Proc Natl Acad Sci USA 97, 5203–5207 (2000). doi: 10.1073/pnas.090098797 |
[47] | Bennett B D, Jetton T L, Ying G T, Magnuson M A, Piston D W.Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271, 3647–3651 (1996). doi: 10.1074/jbc.271.7.3647 |
[48] | Huang S H, Heikal A A, Webb W W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82, 2811–2825 (2002). doi: 10.1016/S0006-3495(02)75621-X |
[49] | Deyl Z, Macek K, Adam M, Vančíková.Studies on the chemical nature of elastin fluorescence. Biochimi Biophys Acta 625, 248–254 (1980). doi: 10.1016/0005-2795(80)90288-3 |
[50] | Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T et al.Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100, 7075–7080 (2003). doi: 10.1073/pnas.0832308100 |
[51] | Yu Q R, Heikal A A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B 95, 46–57 (2009). doi: 10.1016/j.jphotobiol.2008.12.010 |
[52] | Kasischke K A, Lambert E M, Panepento B, Sun A, Gelbard H A et al.Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab 31, 68–81 (2010). |
[53] | Balu M, Mazhar A, Hayakawa C K, Mittal R, Krasieva T B et al.In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J 104, 258–267 (2013). doi: 10.1016/j.bpj.2012.11.3809 |
[54] | Mansour A A, Gonçalves J T, Bloyd C W, Li H, Fernandes S et al.An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36, 432–441 (2018). doi: 10.1038/nbt.4127 |
[55] | Mei J, Huang Y H, Tian H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces 10, 12217–12261 (2018). doi: 10.1021/acsami.7b14343 |
[56] | Collot M, Fam T K, Ashokkumar P, Faklaris O, Galli T et al.Ultrabright and fluorogenic probes for multicolor imaging and tracking of lipid droplets in cells and tissues. J Am Chem Soc 140, 5401–5411 (2018). doi: 10.1021/jacs.7b12817 |
[57] | Lou X D, Zhao Z J, Tang B Z. Organic dots based on AIEgens for two-photon fluorescence bioimaging. Small 12, 6430–6450 (2016). doi: 10.1002/smll.201600872 |
[58] | Ding D, Goh C C, Feng G X, Zhao Z J, Liu J et al.Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv Mat 25, 6083–6088 (2013). doi: 10.1002/adma.201301938 |
[59] | Yi R X, Das P, Lin F R, Shen B L, Yang Z G et al.Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I & II bioimaging. Opt Express 27, 12360–12372 (2019). doi: 10.1364/OE.27.012360 |
[60] | Wang H F, Huff T B, Zweifel D A, He W, Low P S et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102, 15752–15756 (2005). doi: 10.1073/pnas.0504892102 |
[61] | Rane T D, Armani A M. Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS One 11, e0167548 (2016). doi: 10.1371/journal.pone.0167548 |
[62] | Tong L, Cobley C M, Chen J Y, Xia Y N, Cheng J X.Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew Chem Int Ed 49, 3485–3488 (2010). doi: 10.1002/anie.201000440 |
[63] | Au L, Zhang Q, Cobley C M, Gidding M, Schwartz A G et al.Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 4, 35–42 (2010). doi: 10.1021/nn901392m |
[64] | Park Y I, Lee K T, Suh Y D, Hyeon T.Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev 44, 1302–1317 (2015). doi: 10.1039/C4CS00173G |
[65] | Yang S T, Cao L, Luo P G, Lu F S, Wang X et al.Carbon dots for optical imaging in vivo. J Am Chem Soc 131, 11308–11309 (2009). doi: 10.1021/ja904843x |
[66] | Li D, Jing P T, Sun L H, An Y, Shan X Y et al.Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mat 30, 1705913 (2018). doi: 10.1002/adma.201705913 |
[67] | Wu C F, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52, 3086–3109 (2013). doi: 10.1002/anie.201205133 |
[68] | Gao Y T, Feng G X, Jiang T, Goh C, Ng L et al.Biocompatible Nanoparticles based on diketo-pyrrolo-pyrrole (DPP) with aggregation-induced Red/NIR emission for in vivo two-photon fluorescence imaging. Adv Funct Mater 25, 2857–2866 (2015). doi: 10.1002/adfm.201500010 |
[69] | Horton N G, Wang K, Kobat D, Clark C G, Wise F W et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photon 7 205–209 (2013). doi: 10.1038/nphoton.2012.336 |
[70] | Ouzounov D G, Wang T Y, Wang M R, Feng D D, Horton N G et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 14, 388–390 (2017). doi: 10.1038/nmeth.4183 |
[71] | Wang T Y, Ouzounov D G, Wu C Y, Horton N G, Zhang B et al.Three-photon imaging of mouse brain structure and function through the intact skull. Nat Methods 15, 789–792 (2018). doi: 10.1038/s41592-018-0115-y |
[72] | Rowlands C J, Park D, Bruns O T, Piatkevich K D, Fukumura D et al.Wide-field three-photon excitation in biological samples. Light Sci Appl 6, e16255 (2017). doi: 10.1038/lsa.2016.255 |
[73] | Guesmi K, Abdeladim L, Tozer S, Mahou P, Kumamoto T et al.Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light Sci Appl 7, 12 (2018). doi: 10.1038/s41377-018-0012-2 |
[74] | Campagnola P J, Loew L M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21, 1356–1360 (2003). doi: 10.1038/nbt894 |
[75] | Mohler W, Millard A C, Campagnola P J.Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003). doi: 10.1016/S1046-2023(02)00292-X |
[76] | Hellwarth R, Christensen P. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Comm 12, 318–322 (1974). doi: 10.1016/0030-4018(74)90024-8 |
[77] | Sheppard C, Gannaway J, Kompfner R, Walsh D.The scanning harmonic optical microscope. IEEE J Quantum Electron 13, 912 (1977). |
[78] | Freund I, Deutsch M, Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J 50, 693–712 (1986). doi: 10.1016/S0006-3495(86)83510-X |
[79] | Lodish H, Berk A, Kaiser C A, Krieger M, Bretscher A et al. Molecular Cell Biology 7th ed (W. H. Freeman and Company, New York, 2013). |
[80] | Bueno J M, Ávila F J, Artal P. Second harmonic generation microscopy: a tool for quantitative analysis of tissues, Microscopy and Analysis. London: IntechOpen, 2016: 19–27. |
[81] | Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostic. Anal Chem 83, 3224–3231 (2011). doi: 10.1021/ac1032325 |
[82] | Gusachenko I, Tran V, Houssen Y G, Allain J M, Schanne-Klein M C. Polarization-resolved second-harmonic generation in tendon upon mechanical stretching. Biophys J 102, 2220–2229 (2012). doi: 10.1016/j.bpj.2012.03.068 |
[83] | Chen X Y, Nadiarynkh O, Plotnikov S, Campagnola P J.Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7, 654–669 (2012). doi: 10.1038/nprot.2012.009 |
[84] | Lo W, Chen W L, Hsueh C M, Ghazaryan A A, Chen S J et al. Fast Fourier transform-based analysis of second-harmonic generation Image in keratoconic cornea. Invest Ophthalmol Vis Sci 53, 3501–3507 (2012). doi: 10.1167/iovs.10-6697 |
[85] | Tan H Y, Chang Y L, Lo W, Hsueh C M, Chen W L et al.Characterizing the morphologic changes in collagen crosslinked–treated corneas by Fourier transform–second harmonic generation imaging. J Cat Refract Surg 39, 779–788 (2013). doi: 10.1016/j.jcrs.2012.11.036 |
[86] | Provenzano P P, Eliceiri K W, Campbell J M, Inman D R, White J G et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4, 38 (2006). doi: 10.1186/1741-7015-4-38 |
[87] | Conklin M W, Eickhoff J C, Riching K M, Pehlke C A, Eliceiri K W et al.Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178, 1221–1232 (2011). doi: 10.1016/j.ajpath.2010.11.076 |
[88] | Sahai E, Wyckoff J, Philippar U, Segall J E, Gertler F et al.Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 5, 14 (2005). doi: 10.1186/1472-6750-5-14 |
[89] | Kirkpatrick N D, Brewer M A, Utzinger U. Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev 16, 2048–2057 (2007). doi: 10.1158/1055-9965.EPI-07-0009 |
[90] | Nadiarnykh O, LaComb R B, Brewer M A, Campagnola P J.Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer 10, 94 (2010). doi: 10.1186/1471-2407-10-94 |
[91] | Lin S J, Jee S H, Kuo C J, Wu R J, Lin W C et al.Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 31, 2756–2758 (2006). doi: 10.1364/OL.31.002756 |
[92] | Cicchi R, Massi D, Sestini S, Carli P, De Giorgi V et al.Multidimensional non-linear laser imaging of Basal Cell Carcinoma. Opt Express 15, 10135–10148 (2007). doi: 10.1364/OE.15.010135 |
[93] | Dimitrow E, Ziemer M, Koehler M J, Norgauer J, König K et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 129, 1752–1758 (2009). doi: 10.1038/jid.2008.439 |
[94] | Chen S Y, Chen S U, Wu H Y, Lee W J, Liao Y H et al. In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy. IEEE J Sel Top Quant Electron 16, 478–492 (2010). doi: 10.1109/JSTQE.2009.2031987 |
[95] | Sun W X, Chang S, Tai D C S, Tan N, Xiao G F et al. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt 13, 064010 (2008). doi: 10.1117/1.3041159 |
[96] | Strupler M, Pena A M, Hernest M, Tharaux P L, Martin J L et al.Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 15, 4054–4065 (2007). doi: 10.1364/OE.15.004054 |
[97] | Lacomb R, Nadiarnykh O, Campagnola P J. Quantitative Second Harmonic Generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation. Biophys J 94, 4504–4514 (2008). doi: 10.1529/biophysj.107.114405 |
[98] | Schenke-Layland K, Xie J S, Angelis E, Starcher B, Wu K J et al.Increased degradation of extracellular matrix structures of lacrimal glands implicated in the pathogenesis of Sjögren's syndrome. Matrix Biol 27, 53–66 (2008). |
[99] | Lin S J, Wu R E, Tan H Y, Lo W, Lin W C et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett 30, 2275–2277 (2005). doi: 10.1364/OL.30.002275 |
[100] | Le T T, Langohr I, Locker M J, Sturek M, Cheng J X.Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12, 054007 (2007). doi: 10.1117/1.2795437 |
[101] | Kwon G P, Schroeder J L, Amar M J, Remaley A T, Balaban R S et al.Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117, 2919–2927 (2008). doi: 10.1161/CIRCULATIONAHA.107.754614 |
[102] | Kachynski A V, Pliss A, Kuzmin A N, Ohulchanskyy T Y, Baev A et al.Photodynamic therapy by in situ nonlinear photon conversion. Nat Photonics 8, 455–461 (2014). doi: 10.1038/nphoton.2014.90 |
[103] | Bonacina L, Mugnier Y, Courvoisier F, Le Dantec R, Extermann J et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Appl Phys B 87, 399–403 (2007). |
[104] | Le X L, Zhou C Y, Slablab A, Chauvat D, Tard C et al. Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy. Small 4, 1332–1336 (2008). doi: 10.1002/smll.200701093 |
[105] | Kachynski A V, Kuzmin A N, Nyk M, Roy I, Prasad P N. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J Phys Chem C 112, 10721–10724 (2008). |
[106] | Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E et al.Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys Rev Lett 105, 077401 (2010). doi: 10.1103/PhysRevLett.105.077401 |
[107] | Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E et al.Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 10, 1717–1721 (2010). doi: 10.1021/nl1000949 |
[108] | Zavelani-Rossi M, Celebrano M, Biagioni P, Polli D, Finazzi M et al.Near-field second-harmonic generation in single gold nanoparticles. Appl Phys Lett 92, 093119 (2008). doi: 10.1063/1.2889450 |
[109] | Hsieh C L, Grange R, Pu Y, Psaltis D.Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31, 2272–2277 (2010). doi: 10.1016/j.biomaterials.2009.11.096 |
[110] | Pantazis P, Maloney J, Wu D, Fraser S E.Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc Natl Acad Sci USA 107, 14535–14540 (2010). doi: 10.1073/pnas.1004748107 |
[111] | Kuo T R, Wu C L, Hsu C T, Lo W, Chiang S J et al.Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30, 3002–3008 (2009). doi: 10.1016/j.biomaterials.2009.02.003 |
[112] | Magouroux T, Extermann J, Hoffmann P, Mugnier Y, Dantec R L et al.High-speed tracking of murine cardiac stem cells by harmonic nanodoublers. Small 8, 2752–2756 (2012). |
[113] | de Boer W D A M, Hirtz J J, Capretti A, Gregorkiewicz T, Izquierdo-Serra et al.Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light Sci Appl 7: 100. (2018) doi: 10.1038/s41377-018-0103-0 |
[114] | Cheng J X, Xie X S. Green's function formulation for third-harmonic generation microscopy. J Opt Soc Am B 19, 1604–1610 (2002). doi: 10.1364/JOSAB.19.001604 |
[115] | Sordillo L A, Pu Y, Pratavieira S, Budansky Y, Alfano R R.Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed Opt 19, 056004 (2014). doi: 10.1117/1.JBO.19.5.056004 |
[116] | Tsang T Y F. Optical third-harmonic generation at interfaces. Phys Rev A 52, 4116–4125 (1995). doi: 10.1103/PhysRevA.52.4116 |
[117] | Barad Y, Eisenberg H, Horowitz M, Silberberg Y.Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70, 922–924 (1997). doi: 10.1063/1.118442 |
[118] | Yelin D, Silberberg Y. Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5, 169–175 (1999). doi: 10.1364/OE.5.000169 |
[119] | Débarre D, Supatto W, Pena A M, Fabre A, Tordjmann T et al.Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3, 47–53 (2006). doi: 10.1038/nmeth813 |
[120] | Chen S Y, Hsieh C S, Chu S W, Lin C Y, Ko C Y et al.Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. J Biomed Opt 11, 054022 (2006). doi: 10.1117/1.2363369 |
[121] | Pryke S R, Rollins L A, Griffith S C. Females use multiple mating and genetically loaded sperm competition to target compatible genes. Science 329, 964–967 (2010). doi: 10.1126/science.1192407 |
[122] | Chu S W, Chen S Y, Tsai T H, Liu T M, Lin C Y et al.In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11, 3093–3099 (2003). doi: 10.1364/OE.11.003093 |
[123] | Yildirim M, Durr N, Ben-Yakar A. Tripling the maximum imaging depth with third-harmonic generation microscopy. J. Biomed Opt 20, 096013 (2015). doi: 10.1117/1.JBO.20.9.096013 |
[124] | Karunendiran A, Cisek R, Tokarz D, Barzda V, Stewart B A.Examination of Drosophila eye development with third harmonic generation microscopy. Biomed Opt Express 8, 4504–4513 (2017). doi: 10.1364/BOE.8.004504 |
[125] | Tai S P, Lee W J, Shieh D B, Wu P C, Huang H Y et al. In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy. Opt Express 14, 6178–6187 (2006). doi: 10.1364/OE.14.006178 |
[126] | Tsai M R, Chen S Y, Shieh D B, Lou P J, Sun C K. In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomed Opt Express 2, 2317–2328 (2011). doi: 10.1364/BOE.2.002317 |
[127] | Lee W J, Lee C F, Chen S Y, Chen Y S, Sun C K.Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy. J. Biomed Opt 15, 046012 (2010). doi: 10.1117/1.3469848 |
[128] | Genthial R, Beaurepaire E, Schanne-Klein M C, Peyrin F, Farlay D et al.Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy. Sci Rep 7, 3419 (2017). doi: 10.1038/s41598-017-03548-5 |
[129] | Tokarz D, Cisek R, Wein M N, Turcotte R, Haase C et al.Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy. PLoS One 12, e0186846 (2017). doi: 10.1371/journal.pone.0186846 |
[130] | Tsai C K, Wang T D, Lin J W, Hsu R B, Guo L Z et al.Virtual optical biopsy of human adipocytes with third harmonic generation microscopy. Biomed Opt Express 4, 178–186 (2013). doi: 10.1364/BOE.4.000178 |
[131] | Weigelin B, Bakker G J, Friedl P. Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics. IntraVital 1, 32–43 (2012). doi: 10.4161/intv.21223 |
[132] | Lee G G, Lin H H, Tsai M R, Chou S Y, Lee W J et al.Automatic cell segmentation and nuclear-to-cytoplasmic ratio analysis for third harmonic generated microscopy medical images. IEEE Trans Biomed Circuits Syst 7, 158–168 (2013). doi: 10.1109/TBCAS.2013.2253463 |
[133] | Lee J H, Chen S Y, Yu C H, Chu S W, Wang L F et al.Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J Biomed Opt 14, 014008 (2009). doi: 10.1117/1.3077182 |
[134] | Tai S P, Tsai T H, Lee W J, Shieh D B, Liao Y H et al.Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt Express 13, 8231–8242 (2005). doi: 10.1364/OPEX.13.008231 |
[135] | Tsai M R, Cheng Y H, Chen J S, Sheen Y S, Liao Y H et al.Differential diagnosis of nonmelanoma pigmented skin lesions based on harmonic generation microscopy. J Biomed Opt 19, 036001 (2014). doi: 10.1117/1.JBO.19.3.036001 |
[136] | Wu P C, Hsieh T Y, Tsai Z U, Liu T M. In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep 5, 8879 (2015). doi: 10.1038/srep08879 |
[137] | Adur J, Pelegati V B, De Thomaz A A, Baratti M O, Almeida D B et al.Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One 7, e47007 (2012). doi: 10.1371/journal.pone.0047007 |
[138] | Kuzmin N V, Wesseling P, de Witt Hamer P C, Noske D P, Galgano G D et al.Third harmonic generation imaging for fast, label-free pathology of human brain tumors. Biomed Opt Express 7, 1889–1904 (2016). doi: 10.1364/BOE.7.001889 |
[139] | Lim H, Sharoukhov D, Kassim I, Zhang Y Q, Salzer J L et al.Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc Natl Acad Sci USA111, 18025–18030 (2014). doi: 10.1073/pnas.1417820111 |
[140] | Witte S, Negrean A, Lodder J C, de Kock C P J, Silva G T et al.Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci USA108, 5970–5975 (2011). doi: 10.1073/pnas.1018743108 |
[141] | Lanin A A, Chebotarev A S, Pochechuev M S, Kelmanson I V, Fedotov A B et al. Three-photon-resonance-enhanced third-harmonic generation for label-free deep-brain imaging: In search of a chemical contrast. J Raman Spectrosc 50, 1296–1302 (2019). doi: 10.1002/jrs.5566 |
[142] | Kazarine A, Baakdah F, Gopal A A, Oyibo W, Georges E et al.Malaria detection by third-harmonic generation image scanning cytometry. Anal Chem 91, 2216–2223 (2019). doi: 10.1021/acs.analchem.8b04791 |
[143] | van Huizen L M G, Kuzmin N V, Barbé E, van der Velde S, te Velde E A et al.Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. J Biophoton 12, e201800297 (2019). |
[144] | Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y.Multiphoton plasmon-resonance microscopy. Opt Express 11, 1385–1391 (2003). doi: 10.1364/OE.11.001385 |
[145] | Lippitz M, van Dijk M A, Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Lett 5, 799–802 (2005). doi: 10.1021/nl0502571 |
[146] | Schwartz O, Oron D. Background-free third harmonic imaging of gold nanorods. Nano Lett 9, 4093–4097 (2009). doi: 10.1021/nl902305w |
[147] | Liu T M, Tai S P, Yu C H, Wen Y C, Chu S W et al.Measuring plasmon-resonance enhanced third-harmonic χ(3) of Ag nanoparticles. Appl Phys Lett 89, 043122 (2006). doi: 10.1063/1.2240738 |
[148] | Tai S P, Wu Y, Shieh D B, Chen L J, Lin K J et al.Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mat 19, 4520–4523 (2007). doi: 10.1002/adma.200602213 |
[149] | Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C et al.In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett 9, 2440–2444 (2009). doi: 10.1021/nl901143p |
[150] | Chang C F, Chen H C, Chen M J, Liu W R, Hsieh W F et al.Direct backward third-harmonic generation in nanostructures. Opt Express 18, 7397–7406 (2010). doi: 10.1364/OE.18.007397 |
[151] | Chen N, He Y, Su Y Y, Li X M, Huang Q et al.The cytotoxicity of cadmium-based quantum dots. Biomaterials 33, 1238–1244 (2012). doi: 10.1016/j.biomaterials.2011.10.070 |
[152] | Dubreil L, Leroux I, Ledevin M, Schleder C, Lagalice L et al. Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth. ACS Nano 11, 6672–6681 (2017). doi: 10.1021/acsnano.7b00773 |
[153] | Lee C W, Wu P C, Hsu I L, Liu T M, Chong W H et al.New templated ostwald ripening process of mesostructured FeOOH for third-harmonic generation bioimaging. Small 15, 1805086 (2019). doi: 10.1002/smll.201805086 |
[154] | Terhune R W, Maker P D, Savage C M. Measurements of nonlinear light scattering. Phys Rev Lett 14, 681–684 (1965). doi: 10.1103/PhysRevLett.14.681 |
[155] | Begley R F, Harvey A B, Byer R L. Coherent anti-stokes Raman spectroscopy. Appl Phys Lett 25, 387–390 (1974). doi: 10.1063/1.1655519 |
[156] | Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett 82, 4142–4145 (1999). doi: 10.1103/PhysRevLett.82.4142 |
[157] | Cheng J X, Jia Y K, Zheng G F, Xie X S.Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys J 83, 502–509 (2002). doi: 10.1016/S0006-3495(02)75186-2 |
[158] | Volkmer A, Cheng J X, Xie X S. Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys Rev Lett 87, 023901 (2001). doi: 10.1103/PhysRevLett.87.023901 |
[159] | Cheng J X, Volkmer A, Book L D, Xie X S.Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles. J Phys Chem B 106, 8493–8498 (2002). doi: 10.1021/jp025771z |
[160] | Müller M, Schins J M. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J Phys Chem B 106, 3715–3723 (2002). doi: 10.1021/jp014012y |
[161] | Nan X L, Yang W Y, Xie X S. CARS microscopy lights up lipids in living cells. Biophoton Int 11, 44–47 (2004). |
[162] | Rakic B, Sagan S M, Noestheden M, Bélanger S, Nan X L et al.Peroxisome proliferator–activated receptor α antagonism inhibits hepatitis C virus replication. Chem Biol 13, 23–30 (2006). doi: 10.1016/j.chembiol.2005.10.006 |
[163] | Nan X L, Tonary A M, Stolow A, Xie X S, Pezacki J P et al.Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies. Chem Bio Chem 7, 1895–1897 (2006). doi: 10.1002/cbic.200600330 |
[164] | Hellerer T, Axäng C, Brackmann C, Hillertz P, Pilon M et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci USA 104, 14658–14663 (2007). doi: 10.1073/pnas.0703594104 |
[165] | Xie X S, Yu J, Yang W Y. Living cells as test tubes. Science 312, 228–230 (2006). doi: 10.1126/science.1127566 |
[166] | Yen K, Le T T, Bansal A, Narasimhan S D, Cheng J X et al.A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5, e12810 (2010). doi: 10.1371/journal.pone.0012810 |
[167] | Nan X L, Potma E O, Xie X S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys J 91, 728–735 (2006). doi: 10.1529/biophysj.105.074534 |
[168] | Lyn R K, Kennedy D C, Stolow A, Ridsdale A, Pezacki J P et al.Dynamics of lipid droplets induced by the hepatitis C virus core protein. Biochem Biophys Res Commun 399, 518–524 (2010). doi: 10.1016/j.bbrc.2010.07.101 |
[169] | Paar M, Jüngst C, Steiner N A, Magnes C, Sinner F et al.Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 287, 11164–11173 (2012). doi: 10.1074/jbc.M111.316794 |
[170] | Evans C L, Potma E O, Puoris'haag M, Côté D, Lin C P et al.Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA 102, 16807–16812 (2005). doi: 10.1073/pnas.0508282102 |
[171] | Breunig H G, Weinigel M, Bückle R, Kellner-Höfer M, Lademann J et al. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber. Laser Phys Lett 10, 025604 (2013). doi: 10.1088/1612-2011/10/2/025604 |
[172] | Evans C L, Xie X S. Coherent anti-Stokes Raman Scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1, 883–909 (2008). doi: 10.1146/annurev.anchem.1.031207.112754 |
[173] | Toytman I, Cohn K, Smith T, Simanovskii D, Palanker D.Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination. Opt Lett 32, 1941–1943 (2007). doi: 10.1364/OL.32.001941 |
[174] | Brackmann C, Esguerra M, Olausson D, Delbro D, Krettek A et al.Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds. J Biomed Opt 16, 021115 (2011). doi: 10.1117/1.3534782 |
[175] | Wang H W, Le T T, Cheng J X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Comm 281, 1813–1822 (2008). doi: 10.1016/j.optcom.2007.07.067 |
[176] | Wang H F, Fu Y, Zickmund P, Shi R, Cheng J X.Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J 89, 581–591 (2005). doi: 10.1529/biophysj.105.061911 |
[177] | Huff T B, Cheng J X. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J Microsc 225, 175–182 (2007). doi: 10.1111/j.1365-2818.2007.01729.x |
[178] | Fu Y, Wang H F, Huff T B, Shi R, Cheng J X. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res 85, 2870–2881 (2007). doi: 10.1002/jnr.21403 |
[179] | Yookyung J, Ng J H, Keating C P, Senthil-Kumar P, Zhao J et al.Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS One 9, e94054 (2014). doi: 10.1371/journal.pone.0094054 |
[180] | Evans C L, Xu X Y, Kesari S, Xie X S, Wong S T C et al.Chemically-selective imaging of brain structures with CARS microscopy. Opt Express 15, 12076–12087 (2007). doi: 10.1364/OE.15.012076 |
[181] | Légaré F, Evans C L, Ganikhanov, Xie X S.Towards CARS endoscopy. Optics Express 14, 4427–4432 (2006). doi: 10.1364/OE.14.004427 |
[182] | Camp Jr C H, Lee Y J, Heddleston J M, Hartshorn C M, Walker A R H et al.High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photon 8, 627–634(2014). doi: 10.1038/nphoton.2014.145 |
[183] | Bocklitz T W, Salah F S, Vogler N, Heuke S, Chernavskaia O et al.Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer 16, 534 (2016). doi: 10.1186/s12885-016-2520-x |
[184] | Petersen D, Mavarani L, Niedieker D, Freier E, Tannapfel A et al.Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst 142, 1207–1215 (2017). doi: 10.1039/C6AN02072K |
[185] | Galli R, Uckermann O, Temme A, Leipnitz E, Meinhardt M et al. Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. J Biophoton 10, 404–414 (2017). doi: 10.1002/jbio.201500323 |
[186] | Karuna A, Masia F, Wiltshire M, Errington R, Langbein W.Label-free volumetric quantitative imaging of the human somatic cell division by hyperspectral coherent anti-Stokes Raman scattering. Anal Chem 91, 2813–2821 (2019). doi: 10.1021/acs.analchem.8b04706 |
[187] | Niedieker D, Grosserüschkamp F, Schreiner A, Barkovits K, Kötting C et al.Label-free identification of myopathological features with coherent anti-Stokes Raman scattering. Muscle Nerve 58, 456–459 (2018). doi: 10.1002/mus.26140 |
[188] | Hirose K, Fukushima S, Fukushima T, Niioka H, Hashimoto M.Invited Article: Label-free nerve imaging with a coherent anti-Stokes Raman scattering rigid endoscope using two optical fibers for laser delivery. APL Photon 3, 092407 (2018). doi: 10.1063/1.5031817 |
[189] | Kang E, Wang H F, Kwon I K, Robinson J, Cheng J X.In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy. Anal Chem 78, 8036–8043 (2006). doi: 10.1021/ac061218s |
[190] | Hartshorn C M, Lee Y J, Camp Jr C H, Liu Z, Heddleston J et al.Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy. Anal Chem 85, 8102–8111 (2013). doi: 10.1021/ac400671p |
[191] | Fussell A L, Grasmeijer F, Frijlink H W, de Boer A H, Offerhaus H L. CARS microscopy as a tool for studying the distribution of micronised drugs in adhesive mixtures for inhalation. J Raman Spectrosc 45, 495–500 (2014). doi: 10.1002/jrs.4515 |
[192] | Tong L, Lu Y H, Lee R J, Cheng J X.Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-Stokes Raman scattering probe. J Phys Chem B 111, 9980–9985 (2007). doi: 10.1021/jp073478z |
[193] | Xu P S, Gullotti E, Tong L, Highley C B, Errabelli D R et al.Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 6, 190–201 (2009). doi: 10.1021/mp800137z |
[194] | Garrett N L, Lalatsa A, Begley D, Mihoreanu L, Uchegbu I F et al.Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy. J Raman Spectrosc 43, 681–688 (2012). doi: 10.1002/jrs.3170 |
[195] | Darville N, Saarinen J, Isomäki A, Khriachtchev L, Cleeren D et al. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal–cell interactions. Eur J Pharm Biopharm 96, 338–348 (2015). doi: 10.1016/j.ejpb.2015.09.003 |
[196] | Freudiger C W, Min W, Saar B G, Lu S J, Holtom G R et al.Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). doi: 10.1126/science.1165758 |
[197] | Ozeki Y, Dake F, Kajiyama S, Fukui K, Itoh K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt Express 17, 3651–3658 (2009). doi: 10.1364/OE.17.003651 |
[198] | Nandakumar P, Kovalev A, Volkmer A.Vibrational imaging based on stimulated Raman scattering microscopy. New J Phys 11, 033026 (2009). doi: 10.1088/1367-2630/11/3/033026 |
[199] | Zhang D L, Slipchenko M N, Cheng J X. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. J Phys Chem Lett 2, 1248–1253 (2011). doi: 10.1021/jz200516n |
[200] | Andresen E R, Berto P, Rigneault H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt Lett 36, 2387–2389 (2011). doi: 10.1364/OL.36.002387 |
[201] | Beier H T, Noojin G D, Rockwell B A. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt Express 19, 18885–18892 (2011). doi: 10.1364/OE.19.018885 |
[202] | Slipchenko M N, Oglesbee R A, Zhang D L, Wu W, Cheng J X.Heterodyne detected nonlinear optical imaging in a lock-in free manner. J Biophoton 5, 801–807 (2012). doi: 10.1002/jbio.201200005 |
[203] | Cheng J X, Xie X S, Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 350, aaa8870 (2015). doi: 10.1126/science.aaa8870 |
[204] | Woodbury E J, Ng W K. Ruby laser operation in near IR. Proc Inst Radio Eng 50, 2367 (1962). |
[205] | Owyoung A, Jones E D. Stimulated Raman spectroscopy using low-power cw lasers. Opt Lett 1, 152–154 (1977). doi: 10.1364/OL.1.000152 |
[206] | Ploetz E, Laimgruber S, Berner S, Zinth W, Gilch P.Femtosecond stimulated Raman microscopy. Appl Phys B 87, 389–393 (2007). doi: 10.1007/s00340-007-2630-x |
[207] | Wang M C, Min W, Freudiger C W, Ruvkun G, Xie X S.RNAi screening for fat regulatory genes with SRS microscopy. Nat Methods 8, 135–138 (2011). doi: 10.1038/nmeth.1556 |
[208] | Dou W, Zhang D L, Jung Y, Cheng J X, Umulis D M.Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. Biophys J 102, 1666–1675 (2012). doi: 10.1016/j.bpj.2012.01.057 |
[209] | Wang P, Liu B, Zhang D L, Belew M Y, Tissenbaum H A et al.Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew Chem Int Ed 53, 11787–11792 (2014). doi: 10.1002/anie.201406029 |
[210] | Hu C R, Zhang D L, Slipchenko M N, Cheng J X, Hu B.Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. J Biomed Opt 19, 086005 (2014). doi: 10.1117/1.JBO.19.8.086005 |
[211] | Freudiger C W, Pfannl R, Orringer D A, Saar B G, Ji M B et al. Multicolored stain-free histopathology with coherent Raman imaging. Lab Invest 92, 1492–1502 (2012). doi: 10.1038/labinvest.2012.109 |
[212] | Lu F K, Ji M B, Fu D, Ni X H, Freudiger C W et al.Multicolor stimulated Raman scattering (SRS) microscopy. Mol Phys 110, 1927–1932 (2012). doi: 10.1080/00268976.2012.695028 |
[213] | Lu F K, Basu S, Igras V, Hoang M P, Ji M B et al.Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 112, 11624–11629 (2015). doi: 10.1073/pnas.1515121112 |
[214] | Yue S H, Li J J, Lee S Y, Lee H J, Shao T et al.Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 19, 393–406 (2014). doi: 10.1016/j.cmet.2014.01.019 |
[215] | Wang P, Li J J, Wang P, Hu C R, Zhang D L et al.Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated raman scattering microscopy. Angew Chem Int Ed 52, 13042–13046 (2013). doi: 10.1002/anie.201306234 |
[216] | Li J J, Condello S, Thomes-Pepin J, Ma X X, Xia Y et al.Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314. (2017). doi: 10.1016/j.stem.2016.11.004 |
[217] | Mittal R, Balu M, Krasieva T, Potma E O, Elkeeb L et al.Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg Med 45, 496–502 (2013). |
[218] | Ji M B, Orringer D A, Freudiger C W, Ramkissoon S, Liu X H et al.Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med 5, 201ra119 (2013). |
[219] | Jermyn M, Mok K, Mercier J, Desroches J, Pichette J et al.Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7, 274ra19 (2015). doi: 10.1126/scitranslmed.aaa2384 |
[220] | Ji M B, Arbel M, Zhang L L, Freudiger C W, Hou S S et al.Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy. Sci Adv 4, eaat7715 (2018). doi: 10.1126/sciadv.aat7715 |
[221] | Yan S, Cui S S, Ke K, Zhao B X, Liu X L et al.Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer. Anal Chem 90, 6362–6366 (2018). doi: 10.1021/acs.analchem.8b01312 |
[222] | Wei L, Yu Y, Shen Y H, Wang M C, Min W.Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 110, 11226–11231 (2013). doi: 10.1073/pnas.1303768110 |
[223] | Li J J, Cheng J X. Direct visualization of de novo lipogenesis in single living cells. Sci Rep 4, 6807 (2014). |
[224] | Shen Y H, Xu F, Wei L, Hu F H, Min W.Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew Chem Int Ed 53, 5596–5599 (2014). doi: 10.1002/anie.201310725 |
[225] | Li X S, Li Y, Jiang M J, Wu W J, He S C et al.Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy. Anal Chem 91, 2279–2287 (2019). doi: 10.1021/acs.analchem.8b04875 |
[226] | Slipchenko M N, Chen H T, Ely D R, Jung Y, Carvajal M T et al.Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst 135, 2613–2619 (2010). doi: 10.1039/c0an00252f |
[227] | Fu D, Zhou J, Zhu W J S, Manley P W, Wang Y K et al.Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem 6, 614–622 (2014). doi: 10.1038/nchem.1961 |
[228] | Chiu W S, Belsey N A, Garrett N L, Moger J, Delgado-Charro M B et al.Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 112, 7725–7730 (2015). |
[229] | Wei L, Min W. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal Bioanal Chem 403, 2197–2202 (2012). doi: 10.1007/s00216-012-5890-1 |
[230] | Fischer M C, Wilson J W, Robles F E, Warren W S.Invited Review Article: Pump-probe microscopy. Rev Sci Instrum 87, 031101 (2016). doi: 10.1063/1.4943211 |
[231] | Dong P T, Chen J X. Pump-probe microscopy: theory, instrumentation, and application. Spectroscopy 32, 24–36 (2017). |
[232] | Dong C Y, So P T, French T, Gratton E.Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J 69, 2234–2242 (1995). doi: 10.1016/S0006-3495(95)80148-7 |
[233] | Fu D, Ye T, Matthews T E, Yurtsever G, Warren Sr W S.Two-color, two-photon, and excited-state absorption microscopy. J Biomed Opt 12, 054004 (2007). doi: 10.1117/1.2780173 |
[234] | Dan F, Ye T, Matthews T, Chen B J, Yurtserver G et al.High-resolution in vivo imaging of blood vessels without labeling. Opt Lett 32, 2641–2643 (2007). doi: 10.1364/OL.32.002641 |
[235] | Min W, Lu S J, Chong S S, Roy R, Holtom G R et al.Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009). doi: 10.1038/nature08438 |
[236] | Piletic I R, Matthews T E, Warren W S. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. J Phys Chem A 114, 11483–11491 (2010). doi: 10.1021/jp103608d |
[237] | Matthews T E, Wilson J W, Degan S, Simpson M J, Jin J Y et al. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. Biomed Opt Express 2, 1576–1583 (2011). doi: 10.1364/BOE.2.001576 |
[238] | Robles F E, Deb S, Wilson J W, Gainey C S, Selim M A et al.Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomed Opt Express6, 3631–3645 (2015). doi: 10.1364/BOE.6.003631 |
[239] | Chen A J, Yuan X J, Li J J, Dong P T, Hamza I et al.Label-free imaging of heme dynamics in living organisms by transient absorption microscopy. Anal Chem 90, 3395–3401 (2018). doi: 10.1021/acs.analchem.7b05046 |
[240] | Dong P T, Lin H N, Huang K C, Cheng J X.Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. Sci Adv 5, eaav0561 (2019). doi: 10.1126/sciadv.aav0561 |
[241] | Tong L, Liu Y X, Dolash B D, Jung Y, Slipchenko M N et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nat Nanotechnol 7, 56–61 (2012). |
[242] | Chen T, Lu F, Streets A M, Fei P, Quan J M et al. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. Nanoscale 5, 4701–4705 (2013). doi: 10.1039/c3nr00308f |
[243] | Chen T, Chen S H, Zhou J H, Liang D H, Chen X Y et al. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells. Nanoscale 6, 10536–10539 (2014). doi: 10.1039/C4NR03413A |
[244] | Li J J, Zhang W X, Chung T F, Slipchenko M N et al. Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. Sci Rep 5, 12394 (2015). doi: 10.1038/srep12394 |
[245] | Liao C S, Slipchenko M N, Wang P, Li J J, Lee S Y et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci Appl 4, e265 (2015). doi: 10.1038/lsa.2015.38 |
Typical examples of nonlinear optics processes and applications.
Main nonlinear optical modalities applied to bioimaging.
Energy diagrams of nonlinear optical processes employed for the bio-imaging.
Two-photon excited fluorescence imaging of vasculature and neuron in vivo.
Second harmonic generation imaging of the collagen tissues.
Third harmonic generation microscopic imaging of the tissues in vivo.
Coherent anti-Stokes Raman scattering imaging of tissues with CH2 contrast.
Stimulated Raman scattering imaging of biological samples.
Transient absorption imaging of heme granule dynamics in C. elegans.