Zhang S L, Liu L W, Ren S, Li Z L, Zhao Y H et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003
Citation: Zhang S L, Liu L W, Ren S, Li Z L, Zhao Y H et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003

Review Open Access

Recent advances in nonlinear optics for bio-imaging applications

More Information
  • Nonlinear optics, which is a subject for studying the interaction between intense light and materials, has great impact on various research fields. Since many structures in biological tissues exhibit strong nonlinear optical effects, nonlinear optics has been widely applied in biomedical studies. Especially in the aspect of bio-imaging, nonlinear optical techniques can provide rapid, label-free and chemically specific imaging of biological samples, which enable the investigation of biological processes and analysis of samples beyond other microscopy techniques. In this review, we focus on the introduction of nonlinear optical processes and their applications in bio-imaging as well as the recent advances in this filed. Our perspective of this field is also presented.
  • 加载中
  • [1] Shen Y R. The Principles of Nonlinear Optics (Wiley Press, New York, 1984).

    Google Scholar

    [2] Boyd R W. Nonlinear Optics (Academic Press, New York, 2007).

    Google Scholar

    [3] Agrawal G P. Applications of Nonlinear Fiber Optics (Academic Press, London, 2001).

    Google Scholar

    [4] Saleh B E A, Teich M C. Fundamentals of Photonics 2nd ed (Wiley, Hoboken, 2007).

    Google Scholar

    [5] Garmire E. Nonlinear optics in daily life. Opt Exp 21, 30532–30544 (2013). doi: 10.1364/OE.21.030532

    CrossRef Google Scholar

    [6] Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto Electron Adv 1, 170001 (2018).

    Google Scholar

    [7] Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018).

    Google Scholar

    [8] Franken P A, Hill A E, Peters C W, Weinreich G.Generation of optical harmonics. Phys Rev Lett 7, 118–119 (1961). doi: 10.1103/PhysRevLett.7.118

    CrossRef Google Scholar

    [9] Maiman T H. Optical and microwave-optical experiments in ruby. Phys Rev Lett 4, 564–566 (1960). doi: 10.1103/PhysRevLett.4.564

    CrossRef Google Scholar

    [10] Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).

    Google Scholar

    [11] Myers L E, Bosenberg W R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J Quantum Electron 33, 1663–1672 (1997). doi: 10.1109/3.631262

    CrossRef Google Scholar

    [12] Chen Q, Risk W P. Periodic poling of KTiOPO4 using an applied electric field. Electron Lett 30, 1516–1517 (1994). doi: 10.1049/el:19941019

    CrossRef Google Scholar

    [13] Karlsson H, Laurell F, Henriksson P, Arvidsson G.Frequency doubling in periodically poled RbTiOAsO4. Electron Lett 32, 556–557 (1996). doi: 10.1049/el:19960402

    CrossRef Google Scholar

    [14] Mizuuchi K, Yamamoto K. Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3. Opt Lett 21, 107–109 (1996). doi: 10.1364/OL.21.000107

    CrossRef Google Scholar

    [15] Meyn J P, Fejer M M. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt Lett 22, 1214–1216 (1997). doi: 10.1364/OL.22.001214

    CrossRef Google Scholar

    [16] Setzler S D, Schunemann P G, Pollak T M, Pomeranz L A, Missey M J. Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series. Washington DC: Optical Society of America, 1999: 676.

    Google Scholar

    [17] Meyn J P, Klein M E, Woll D, Wallenstein R, Rytz D.Periodically poled potassium niobate for second-harmonic generation at 463 nm. Opt Lett 24, 1154–1156 (1999). doi: 10.1364/OL.24.001154

    CrossRef Google Scholar

    [18] Johnson J C, Yan H Q, Schaller R D, Petersen P B, Yang P D et al.Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett 2, 279–283 (2002). doi: 10.1021/nl015686n

    CrossRef Google Scholar

    [19] Nakayama Y, Pauzauskie P J, Radenovic A, Onorato R M, Saykally R J et al.Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007). doi: 10.1038/nature05921

    CrossRef Google Scholar

    [20] Long J P, Simpkins B S, Rowenhorst D J, Pehrsson P E.Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett 7, 831–836 (2007). doi: 10.1021/nl0624420

    CrossRef Google Scholar

    [21] Sanatinia R, Swillo M, Anand S. Surface second-harmonic generation from vertical GaP nanopillars. Nano Lett 12, 820–826 (2012). doi: 10.1021/nl203866y

    CrossRef Google Scholar

    [22] Casadei A, Pecora E F, Trevino J, Forestiere C, Rüffer D et al.Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. Nano Lett 14, 2271–2278 (2014). doi: 10.1021/nl404253x

    CrossRef Google Scholar

    [23] Bautista G, Mäkitalo J, Chen Y, Dhaka V, Grasso M et al.Second-harmonic generation imaging of semiconductor nanowires with focused vector beams. Nano Lett 15, 1564–1569 (2015). doi: 10.1021/nl503984b

    CrossRef Google Scholar

    [24] Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K et al.Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014). doi: 10.1126/science.1250564

    CrossRef Google Scholar

    [25] Zhou X, Cheng J X, Zhou Y B, Cao H, Hong H et al.Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc 137, 7994–7997 (2015). doi: 10.1021/jacs.5b04305

    CrossRef Google Scholar

    [26] Handelman A, Lavrov S, Kudryavtsev A, Khatchatouriants A, Rosenberg Y et al. Nonlinear optical bioinspired peptide nanostructures. Adv Opt Mater 1, 875–884 (2013). doi: 10.1002/adom.201300282

    CrossRef Google Scholar

    [27] Semin S, Van Etteger A, Cattaneo L, Amdursky N, Kulyuk L et al.Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes. Small 11, 1156–1160 (2015). doi: 10.1002/smll.201401602

    CrossRef Google Scholar

    [28] Farrar D, Ren K L, Cheng D, Kim S, Moon W et al.Permanent polarity and piezoelectricity of electrospun α-Helical Poly(α-Amino Acid) Fibers. Adv Mat 23, 3954–3958 (2011). doi: 10.1002/adma.201101733

    CrossRef Google Scholar

    [29] Zhang H H, Liao Q, Wang X D, Xu Z Z, Fu H B.Self-assembled organic hexagonal micro-prisms with high second harmonic generation efficiency for photonic devices. Nanoscale 7, 10186–10192 (2015). doi: 10.1039/C5NR00365B

    CrossRef Google Scholar

    [30] Gibbs H M, Khitrova G, Peyghambarian N. Nonlinear Photonics (Springer, Berlin, 1990).

    Google Scholar

    [31] Philip R, Ravikanth M, Ravindra Kumar G. Studies of third order optical nonlinearity in iron (III) phthalocyanine μ-oxo dimers using picosecond four-wave mixing. Opt Comm 165, 91–97 (1999). doi: 10.1016/S0030-4018(99)00231-X

    CrossRef Google Scholar

    [32] de la Torre G, Vázquez P, Agulló-López, Torres T.Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104, 3723–3750 (2004). doi: 10.1021/cr030206t

    CrossRef Google Scholar

    [33] Senge M O, Fazekas M, Notaras E G A, Blau W J, Zawadzka M et al.Nonlinear optical properties of porphyrins. Adv Mat 19, 2737–2774 (2007). doi: 10.1002/adma.200601850

    CrossRef Google Scholar

    [34] Xu J, Boyd R W, Fischer G L. Nonlinear optical materials. Reference Module in Materials Science and Materials Engineering, Elsevier (2016).

    Google Scholar

    [35] Wang K, Zhou J, Yuan L Y, Tao Y T, Chen J et al.Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire. Nano Lett 12, 833–838 (2012). doi: 10.1021/nl203884j

    CrossRef Google Scholar

    [36] Zhang L C, Wang K, Liu Z, Yang G, Shen G Z et al.Two-photon pumped lasing in a single CdS microwire. Appl Phys Lett 102, 211915 (2013). doi: 10.1063/1.4809537

    CrossRef Google Scholar

    [37] Zhang C F, Zhang F, Xia T, Kumar N, Hahm J I et al.Low-threshold two-photon pumped ZnO nanowire lasers. Opt Express 17, 7893–7900 (2009). doi: 10.1364/OE.17.007893

    CrossRef Google Scholar

    [38] Chelnokov E V, Bityurin N.Two-photon pumped random laser in nanocrystalline ZnO. Appl Phy. Lett 89, 171119 (2006). doi: 10.1063/1.2370879

    CrossRef Google Scholar

    [39] HYPERLINK \l "_bookmark84" Zhang C, Zou C L, Yan Y L, Hao R, Sun F W et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J Am Chem Soc 133, 7276–7279 (2011). doi: 10.1021/ja200549v

    CrossRef Google Scholar

    [40] Yu J C, Cui Y J, Xu H, Yang Y, Wang Z Y et al.Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat Comm 4, 2719 (2013). doi: 10.1038/ncomms3719

    CrossRef Google Scholar

    [41] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2, 932–940 (2005). doi: 10.1038/nmeth818

    CrossRef Google Scholar

    [42] Schenke-Layland K, Riemann I, Damour O, Stock U A, König K.Two-photon microscopes and in vivo multiphoton tomographs-Powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev 58, 878–896 (2006). doi: 10.1016/j.addr.2006.07.004

    CrossRef Google Scholar

    [43] Miller D R, Jarrett J W, Hassan A M, Dunn A K.Deep tissue imaging with multiphoton fluorescence microscopy. Curr Opin Biomed Eng 4, 32–39 (2017). doi: 10.1016/j.cobme.2017.09.004

    CrossRef Google Scholar

    [44] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027

    CrossRef Google Scholar

    [45] Piston D W, Kirby M S, Cheng H, Lederer W J, Webb W W.Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity. Appl Opt 33, 662–669 (1994). doi: 10.1364/AO.33.000662

    CrossRef Google Scholar

    [46] Patterson G H, Knobel S M, Arkhammar P, Thastrup O, Piston D W.Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet β cells. Proc Natl Acad Sci USA 97, 5203–5207 (2000). doi: 10.1073/pnas.090098797

    CrossRef Google Scholar

    [47] Bennett B D, Jetton T L, Ying G T, Magnuson M A, Piston D W.Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271, 3647–3651 (1996). doi: 10.1074/jbc.271.7.3647

    CrossRef Google Scholar

    [48] Huang S H, Heikal A A, Webb W W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82, 2811–2825 (2002). doi: 10.1016/S0006-3495(02)75621-X

    CrossRef Google Scholar

    [49] Deyl Z, Macek K, Adam M, Vančíková.Studies on the chemical nature of elastin fluorescence. Biochimi Biophys Acta 625, 248–254 (1980). doi: 10.1016/0005-2795(80)90288-3

    CrossRef Google Scholar

    [50] Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T et al.Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100, 7075–7080 (2003). doi: 10.1073/pnas.0832308100

    CrossRef Google Scholar

    [51] Yu Q R, Heikal A A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B 95, 46–57 (2009). doi: 10.1016/j.jphotobiol.2008.12.010

    CrossRef Google Scholar

    [52] Kasischke K A, Lambert E M, Panepento B, Sun A, Gelbard H A et al.Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab 31, 68–81 (2010).

    Google Scholar

    [53] Balu M, Mazhar A, Hayakawa C K, Mittal R, Krasieva T B et al.In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J 104, 258–267 (2013). doi: 10.1016/j.bpj.2012.11.3809

    CrossRef Google Scholar

    [54] Mansour A A, Gonçalves J T, Bloyd C W, Li H, Fernandes S et al.An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36, 432–441 (2018). doi: 10.1038/nbt.4127

    CrossRef Google Scholar

    [55] Mei J, Huang Y H, Tian H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces 10, 12217–12261 (2018). doi: 10.1021/acsami.7b14343

    CrossRef Google Scholar

    [56] Collot M, Fam T K, Ashokkumar P, Faklaris O, Galli T et al.Ultrabright and fluorogenic probes for multicolor imaging and tracking of lipid droplets in cells and tissues. J Am Chem Soc 140, 5401–5411 (2018). doi: 10.1021/jacs.7b12817

    CrossRef Google Scholar

    [57] Lou X D, Zhao Z J, Tang B Z. Organic dots based on AIEgens for two-photon fluorescence bioimaging. Small 12, 6430–6450 (2016). doi: 10.1002/smll.201600872

    CrossRef Google Scholar

    [58] Ding D, Goh C C, Feng G X, Zhao Z J, Liu J et al.Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv Mat 25, 6083–6088 (2013). doi: 10.1002/adma.201301938

    CrossRef Google Scholar

    [59] Yi R X, Das P, Lin F R, Shen B L, Yang Z G et al.Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I & II bioimaging. Opt Express 27, 12360–12372 (2019). doi: 10.1364/OE.27.012360

    CrossRef Google Scholar

    [60] Wang H F, Huff T B, Zweifel D A, He W, Low P S et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102, 15752–15756 (2005). doi: 10.1073/pnas.0504892102

    CrossRef Google Scholar

    [61] Rane T D, Armani A M. Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS One 11, e0167548 (2016). doi: 10.1371/journal.pone.0167548

    CrossRef Google Scholar

    [62] Tong L, Cobley C M, Chen J Y, Xia Y N, Cheng J X.Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew Chem Int Ed 49, 3485–3488 (2010). doi: 10.1002/anie.201000440

    CrossRef Google Scholar

    [63] Au L, Zhang Q, Cobley C M, Gidding M, Schwartz A G et al.Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 4, 35–42 (2010). doi: 10.1021/nn901392m

    CrossRef Google Scholar

    [64] Park Y I, Lee K T, Suh Y D, Hyeon T.Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev 44, 1302–1317 (2015). doi: 10.1039/C4CS00173G

    CrossRef Google Scholar

    [65] Yang S T, Cao L, Luo P G, Lu F S, Wang X et al.Carbon dots for optical imaging in vivo. J Am Chem Soc 131, 11308–11309 (2009). doi: 10.1021/ja904843x

    CrossRef Google Scholar

    [66] Li D, Jing P T, Sun L H, An Y, Shan X Y et al.Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mat 30, 1705913 (2018). doi: 10.1002/adma.201705913

    CrossRef Google Scholar

    [67] Wu C F, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52, 3086–3109 (2013). doi: 10.1002/anie.201205133

    CrossRef Google Scholar

    [68] Gao Y T, Feng G X, Jiang T, Goh C, Ng L et al.Biocompatible Nanoparticles based on diketo-pyrrolo-pyrrole (DPP) with aggregation-induced Red/NIR emission for in vivo two-photon fluorescence imaging. Adv Funct Mater 25, 2857–2866 (2015). doi: 10.1002/adfm.201500010

    CrossRef Google Scholar

    [69] Horton N G, Wang K, Kobat D, Clark C G, Wise F W et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photon 7 205–209 (2013). doi: 10.1038/nphoton.2012.336

    CrossRef Google Scholar

    [70] Ouzounov D G, Wang T Y, Wang M R, Feng D D, Horton N G et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 14, 388–390 (2017). doi: 10.1038/nmeth.4183

    CrossRef Google Scholar

    [71] Wang T Y, Ouzounov D G, Wu C Y, Horton N G, Zhang B et al.Three-photon imaging of mouse brain structure and function through the intact skull. Nat Methods 15, 789–792 (2018). doi: 10.1038/s41592-018-0115-y

    CrossRef Google Scholar

    [72] Rowlands C J, Park D, Bruns O T, Piatkevich K D, Fukumura D et al.Wide-field three-photon excitation in biological samples. Light Sci Appl 6, e16255 (2017). doi: 10.1038/lsa.2016.255

    CrossRef Google Scholar

    [73] Guesmi K, Abdeladim L, Tozer S, Mahou P, Kumamoto T et al.Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light Sci Appl 7, 12 (2018). doi: 10.1038/s41377-018-0012-2

    CrossRef Google Scholar

    [74] Campagnola P J, Loew L M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21, 1356–1360 (2003). doi: 10.1038/nbt894

    CrossRef Google Scholar

    [75] Mohler W, Millard A C, Campagnola P J.Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003). doi: 10.1016/S1046-2023(02)00292-X

    CrossRef Google Scholar

    [76] Hellwarth R, Christensen P. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Comm 12, 318–322 (1974). doi: 10.1016/0030-4018(74)90024-8

    CrossRef Google Scholar

    [77] Sheppard C, Gannaway J, Kompfner R, Walsh D.The scanning harmonic optical microscope. IEEE J Quantum Electron 13, 912 (1977).

    Google Scholar

    [78] Freund I, Deutsch M, Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J 50, 693–712 (1986). doi: 10.1016/S0006-3495(86)83510-X

    CrossRef Google Scholar

    [79] Lodish H, Berk A, Kaiser C A, Krieger M, Bretscher A et al. Molecular Cell Biology 7th ed (W. H. Freeman and Company, New York, 2013).

    Google Scholar

    [80] Bueno J M, Ávila F J, Artal P. Second harmonic generation microscopy: a tool for quantitative analysis of tissues, Microscopy and Analysis. London: IntechOpen, 2016: 19–27.

    Google Scholar

    [81] Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostic. Anal Chem 83, 3224–3231 (2011). doi: 10.1021/ac1032325

    CrossRef Google Scholar

    [82] Gusachenko I, Tran V, Houssen Y G, Allain J M, Schanne-Klein M C. Polarization-resolved second-harmonic generation in tendon upon mechanical stretching. Biophys J 102, 2220–2229 (2012). doi: 10.1016/j.bpj.2012.03.068

    CrossRef Google Scholar

    [83] Chen X Y, Nadiarynkh O, Plotnikov S, Campagnola P J.Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7, 654–669 (2012). doi: 10.1038/nprot.2012.009

    CrossRef Google Scholar

    [84] Lo W, Chen W L, Hsueh C M, Ghazaryan A A, Chen S J et al. Fast Fourier transform-based analysis of second-harmonic generation Image in keratoconic cornea. Invest Ophthalmol Vis Sci 53, 3501–3507 (2012). doi: 10.1167/iovs.10-6697

    CrossRef Google Scholar

    [85] Tan H Y, Chang Y L, Lo W, Hsueh C M, Chen W L et al.Characterizing the morphologic changes in collagen crosslinked–treated corneas by Fourier transform–second harmonic generation imaging. J Cat Refract Surg 39, 779–788 (2013). doi: 10.1016/j.jcrs.2012.11.036

    CrossRef Google Scholar

    [86] Provenzano P P, Eliceiri K W, Campbell J M, Inman D R, White J G et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4, 38 (2006). doi: 10.1186/1741-7015-4-38

    CrossRef Google Scholar

    [87] Conklin M W, Eickhoff J C, Riching K M, Pehlke C A, Eliceiri K W et al.Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178, 1221–1232 (2011). doi: 10.1016/j.ajpath.2010.11.076

    CrossRef Google Scholar

    [88] Sahai E, Wyckoff J, Philippar U, Segall J E, Gertler F et al.Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 5, 14 (2005). doi: 10.1186/1472-6750-5-14

    CrossRef Google Scholar

    [89] Kirkpatrick N D, Brewer M A, Utzinger U. Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev 16, 2048–2057 (2007). doi: 10.1158/1055-9965.EPI-07-0009

    CrossRef Google Scholar

    [90] Nadiarnykh O, LaComb R B, Brewer M A, Campagnola P J.Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer 10, 94 (2010). doi: 10.1186/1471-2407-10-94

    CrossRef Google Scholar

    [91] Lin S J, Jee S H, Kuo C J, Wu R J, Lin W C et al.Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 31, 2756–2758 (2006). doi: 10.1364/OL.31.002756

    CrossRef Google Scholar

    [92] Cicchi R, Massi D, Sestini S, Carli P, De Giorgi V et al.Multidimensional non-linear laser imaging of Basal Cell Carcinoma. Opt Express 15, 10135–10148 (2007). doi: 10.1364/OE.15.010135

    CrossRef Google Scholar

    [93] Dimitrow E, Ziemer M, Koehler M J, Norgauer J, König K et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 129, 1752–1758 (2009). doi: 10.1038/jid.2008.439

    CrossRef Google Scholar

    [94] Chen S Y, Chen S U, Wu H Y, Lee W J, Liao Y H et al. In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy. IEEE J Sel Top Quant Electron 16, 478–492 (2010). doi: 10.1109/JSTQE.2009.2031987

    CrossRef Google Scholar

    [95] Sun W X, Chang S, Tai D C S, Tan N, Xiao G F et al. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt 13, 064010 (2008). doi: 10.1117/1.3041159

    CrossRef Google Scholar

    [96] Strupler M, Pena A M, Hernest M, Tharaux P L, Martin J L et al.Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 15, 4054–4065 (2007). doi: 10.1364/OE.15.004054

    CrossRef Google Scholar

    [97] Lacomb R, Nadiarnykh O, Campagnola P J. Quantitative Second Harmonic Generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation. Biophys J 94, 4504–4514 (2008). doi: 10.1529/biophysj.107.114405

    CrossRef Google Scholar

    [98] Schenke-Layland K, Xie J S, Angelis E, Starcher B, Wu K J et al.Increased degradation of extracellular matrix structures of lacrimal glands implicated in the pathogenesis of Sjögren's syndrome. Matrix Biol 27, 53–66 (2008).

    Google Scholar

    [99] Lin S J, Wu R E, Tan H Y, Lo W, Lin W C et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett 30, 2275–2277 (2005). doi: 10.1364/OL.30.002275

    CrossRef Google Scholar

    [100] Le T T, Langohr I, Locker M J, Sturek M, Cheng J X.Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12, 054007 (2007). doi: 10.1117/1.2795437

    CrossRef Google Scholar

    [101] Kwon G P, Schroeder J L, Amar M J, Remaley A T, Balaban R S et al.Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117, 2919–2927 (2008). doi: 10.1161/CIRCULATIONAHA.107.754614

    CrossRef Google Scholar

    [102] Kachynski A V, Pliss A, Kuzmin A N, Ohulchanskyy T Y, Baev A et al.Photodynamic therapy by in situ nonlinear photon conversion. Nat Photonics 8, 455–461 (2014). doi: 10.1038/nphoton.2014.90

    CrossRef Google Scholar

    [103] Bonacina L, Mugnier Y, Courvoisier F, Le Dantec R, Extermann J et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Appl Phys B 87, 399–403 (2007).

    Google Scholar

    [104] Le X L, Zhou C Y, Slablab A, Chauvat D, Tard C et al. Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy. Small 4, 1332–1336 (2008). doi: 10.1002/smll.200701093

    CrossRef Google Scholar

    [105] Kachynski A V, Kuzmin A N, Nyk M, Roy I, Prasad P N. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J Phys Chem C 112, 10721–10724 (2008).

    Google Scholar

    [106] Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E et al.Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys Rev Lett 105, 077401 (2010). doi: 10.1103/PhysRevLett.105.077401

    CrossRef Google Scholar

    [107] Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E et al.Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 10, 1717–1721 (2010). doi: 10.1021/nl1000949

    CrossRef Google Scholar

    [108] Zavelani-Rossi M, Celebrano M, Biagioni P, Polli D, Finazzi M et al.Near-field second-harmonic generation in single gold nanoparticles. Appl Phys Lett 92, 093119 (2008). doi: 10.1063/1.2889450

    CrossRef Google Scholar

    [109] Hsieh C L, Grange R, Pu Y, Psaltis D.Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31, 2272–2277 (2010). doi: 10.1016/j.biomaterials.2009.11.096

    CrossRef Google Scholar

    [110] Pantazis P, Maloney J, Wu D, Fraser S E.Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc Natl Acad Sci USA 107, 14535–14540 (2010). doi: 10.1073/pnas.1004748107

    CrossRef Google Scholar

    [111] Kuo T R, Wu C L, Hsu C T, Lo W, Chiang S J et al.Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30, 3002–3008 (2009). doi: 10.1016/j.biomaterials.2009.02.003

    CrossRef Google Scholar

    [112] Magouroux T, Extermann J, Hoffmann P, Mugnier Y, Dantec R L et al.High-speed tracking of murine cardiac stem cells by harmonic nanodoublers. Small 8, 2752–2756 (2012).

    Google Scholar

    [113] de Boer W D A M, Hirtz J J, Capretti A, Gregorkiewicz T, Izquierdo-Serra et al.Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light Sci Appl 7: 100. (2018) doi: 10.1038/s41377-018-0103-0

    CrossRef Google Scholar

    [114] Cheng J X, Xie X S. Green's function formulation for third-harmonic generation microscopy. J Opt Soc Am B 19, 1604–1610 (2002). doi: 10.1364/JOSAB.19.001604

    CrossRef Google Scholar

    [115] Sordillo L A, Pu Y, Pratavieira S, Budansky Y, Alfano R R.Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed Opt 19, 056004 (2014). doi: 10.1117/1.JBO.19.5.056004

    CrossRef Google Scholar

    [116] Tsang T Y F. Optical third-harmonic generation at interfaces. Phys Rev A 52, 4116–4125 (1995). doi: 10.1103/PhysRevA.52.4116

    CrossRef Google Scholar

    [117] Barad Y, Eisenberg H, Horowitz M, Silberberg Y.Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70, 922–924 (1997). doi: 10.1063/1.118442

    CrossRef Google Scholar

    [118] Yelin D, Silberberg Y. Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5, 169–175 (1999). doi: 10.1364/OE.5.000169

    CrossRef Google Scholar

    [119] Débarre D, Supatto W, Pena A M, Fabre A, Tordjmann T et al.Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3, 47–53 (2006). doi: 10.1038/nmeth813

    CrossRef Google Scholar

    [120] Chen S Y, Hsieh C S, Chu S W, Lin C Y, Ko C Y et al.Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. J Biomed Opt 11, 054022 (2006). doi: 10.1117/1.2363369

    CrossRef Google Scholar

    [121] Pryke S R, Rollins L A, Griffith S C. Females use multiple mating and genetically loaded sperm competition to target compatible genes. Science 329, 964–967 (2010). doi: 10.1126/science.1192407

    CrossRef Google Scholar

    [122] Chu S W, Chen S Y, Tsai T H, Liu T M, Lin C Y et al.In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11, 3093–3099 (2003). doi: 10.1364/OE.11.003093

    CrossRef Google Scholar

    [123] Yildirim M, Durr N, Ben-Yakar A. Tripling the maximum imaging depth with third-harmonic generation microscopy. J. Biomed Opt 20, 096013 (2015). doi: 10.1117/1.JBO.20.9.096013

    CrossRef Google Scholar

    [124] Karunendiran A, Cisek R, Tokarz D, Barzda V, Stewart B A.Examination of Drosophila eye development with third harmonic generation microscopy. Biomed Opt Express 8, 4504–4513 (2017). doi: 10.1364/BOE.8.004504

    CrossRef Google Scholar

    [125] Tai S P, Lee W J, Shieh D B, Wu P C, Huang H Y et al. In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy. Opt Express 14, 6178–6187 (2006). doi: 10.1364/OE.14.006178

    CrossRef Google Scholar

    [126] Tsai M R, Chen S Y, Shieh D B, Lou P J, Sun C K. In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomed Opt Express 2, 2317–2328 (2011). doi: 10.1364/BOE.2.002317

    CrossRef Google Scholar

    [127] Lee W J, Lee C F, Chen S Y, Chen Y S, Sun C K.Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy. J. Biomed Opt 15, 046012 (2010). doi: 10.1117/1.3469848

    CrossRef Google Scholar

    [128] Genthial R, Beaurepaire E, Schanne-Klein M C, Peyrin F, Farlay D et al.Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy. Sci Rep 7, 3419 (2017). doi: 10.1038/s41598-017-03548-5

    CrossRef Google Scholar

    [129] Tokarz D, Cisek R, Wein M N, Turcotte R, Haase C et al.Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy. PLoS One 12, e0186846 (2017). doi: 10.1371/journal.pone.0186846

    CrossRef Google Scholar

    [130] Tsai C K, Wang T D, Lin J W, Hsu R B, Guo L Z et al.Virtual optical biopsy of human adipocytes with third harmonic generation microscopy. Biomed Opt Express 4, 178–186 (2013). doi: 10.1364/BOE.4.000178

    CrossRef Google Scholar

    [131] Weigelin B, Bakker G J, Friedl P. Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics. IntraVital 1, 32–43 (2012). doi: 10.4161/intv.21223

    CrossRef Google Scholar

    [132] Lee G G, Lin H H, Tsai M R, Chou S Y, Lee W J et al.Automatic cell segmentation and nuclear-to-cytoplasmic ratio analysis for third harmonic generated microscopy medical images. IEEE Trans Biomed Circuits Syst 7, 158–168 (2013). doi: 10.1109/TBCAS.2013.2253463

    CrossRef Google Scholar

    [133] Lee J H, Chen S Y, Yu C H, Chu S W, Wang L F et al.Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J Biomed Opt 14, 014008 (2009). doi: 10.1117/1.3077182

    CrossRef Google Scholar

    [134] Tai S P, Tsai T H, Lee W J, Shieh D B, Liao Y H et al.Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt Express 13, 8231–8242 (2005). doi: 10.1364/OPEX.13.008231

    CrossRef Google Scholar

    [135] Tsai M R, Cheng Y H, Chen J S, Sheen Y S, Liao Y H et al.Differential diagnosis of nonmelanoma pigmented skin lesions based on harmonic generation microscopy. J Biomed Opt 19, 036001 (2014). doi: 10.1117/1.JBO.19.3.036001

    CrossRef Google Scholar

    [136] Wu P C, Hsieh T Y, Tsai Z U, Liu T M. In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep 5, 8879 (2015). doi: 10.1038/srep08879

    CrossRef Google Scholar

    [137] Adur J, Pelegati V B, De Thomaz A A, Baratti M O, Almeida D B et al.Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One 7, e47007 (2012). doi: 10.1371/journal.pone.0047007

    CrossRef Google Scholar

    [138] Kuzmin N V, Wesseling P, de Witt Hamer P C, Noske D P, Galgano G D et al.Third harmonic generation imaging for fast, label-free pathology of human brain tumors. Biomed Opt Express 7, 1889–1904 (2016). doi: 10.1364/BOE.7.001889

    CrossRef Google Scholar

    [139] Lim H, Sharoukhov D, Kassim I, Zhang Y Q, Salzer J L et al.Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc Natl Acad Sci USA111, 18025–18030 (2014). doi: 10.1073/pnas.1417820111

    CrossRef Google Scholar

    [140] Witte S, Negrean A, Lodder J C, de Kock C P J, Silva G T et al.Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci USA108, 5970–5975 (2011). doi: 10.1073/pnas.1018743108

    CrossRef Google Scholar

    [141] Lanin A A, Chebotarev A S, Pochechuev M S, Kelmanson I V, Fedotov A B et al. Three-photon-resonance-enhanced third-harmonic generation for label-free deep-brain imaging: In search of a chemical contrast. J Raman Spectrosc 50, 1296–1302 (2019). doi: 10.1002/jrs.5566

    CrossRef Google Scholar

    [142] Kazarine A, Baakdah F, Gopal A A, Oyibo W, Georges E et al.Malaria detection by third-harmonic generation image scanning cytometry. Anal Chem 91, 2216–2223 (2019). doi: 10.1021/acs.analchem.8b04791

    CrossRef Google Scholar

    [143] van Huizen L M G, Kuzmin N V, Barbé E, van der Velde S, te Velde E A et al.Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. J Biophoton 12, e201800297 (2019).

    Google Scholar

    [144] Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y.Multiphoton plasmon-resonance microscopy. Opt Express 11, 1385–1391 (2003). doi: 10.1364/OE.11.001385

    CrossRef Google Scholar

    [145] Lippitz M, van Dijk M A, Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Lett 5, 799–802 (2005). doi: 10.1021/nl0502571

    CrossRef Google Scholar

    [146] Schwartz O, Oron D. Background-free third harmonic imaging of gold nanorods. Nano Lett 9, 4093–4097 (2009). doi: 10.1021/nl902305w

    CrossRef Google Scholar

    [147] Liu T M, Tai S P, Yu C H, Wen Y C, Chu S W et al.Measuring plasmon-resonance enhanced third-harmonic χ(3) of Ag nanoparticles. Appl Phys Lett 89, 043122 (2006). doi: 10.1063/1.2240738

    CrossRef Google Scholar

    [148] Tai S P, Wu Y, Shieh D B, Chen L J, Lin K J et al.Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mat 19, 4520–4523 (2007). doi: 10.1002/adma.200602213

    CrossRef Google Scholar

    [149] Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C et al.In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett 9, 2440–2444 (2009). doi: 10.1021/nl901143p

    CrossRef Google Scholar

    [150] Chang C F, Chen H C, Chen M J, Liu W R, Hsieh W F et al.Direct backward third-harmonic generation in nanostructures. Opt Express 18, 7397–7406 (2010). doi: 10.1364/OE.18.007397

    CrossRef Google Scholar

    [151] Chen N, He Y, Su Y Y, Li X M, Huang Q et al.The cytotoxicity of cadmium-based quantum dots. Biomaterials 33, 1238–1244 (2012). doi: 10.1016/j.biomaterials.2011.10.070

    CrossRef Google Scholar

    [152] Dubreil L, Leroux I, Ledevin M, Schleder C, Lagalice L et al. Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth. ACS Nano 11, 6672–6681 (2017). doi: 10.1021/acsnano.7b00773

    CrossRef Google Scholar

    [153] Lee C W, Wu P C, Hsu I L, Liu T M, Chong W H et al.New templated ostwald ripening process of mesostructured FeOOH for third-harmonic generation bioimaging. Small 15, 1805086 (2019). doi: 10.1002/smll.201805086

    CrossRef Google Scholar

    [154] Terhune R W, Maker P D, Savage C M. Measurements of nonlinear light scattering. Phys Rev Lett 14, 681–684 (1965). doi: 10.1103/PhysRevLett.14.681

    CrossRef Google Scholar

    [155] Begley R F, Harvey A B, Byer R L. Coherent anti-stokes Raman spectroscopy. Appl Phys Lett 25, 387–390 (1974). doi: 10.1063/1.1655519

    CrossRef Google Scholar

    [156] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett 82, 4142–4145 (1999). doi: 10.1103/PhysRevLett.82.4142

    CrossRef Google Scholar

    [157] Cheng J X, Jia Y K, Zheng G F, Xie X S.Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys J 83, 502–509 (2002). doi: 10.1016/S0006-3495(02)75186-2

    CrossRef Google Scholar

    [158] Volkmer A, Cheng J X, Xie X S. Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys Rev Lett 87, 023901 (2001). doi: 10.1103/PhysRevLett.87.023901

    CrossRef Google Scholar

    [159] Cheng J X, Volkmer A, Book L D, Xie X S.Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles. J Phys Chem B 106, 8493–8498 (2002). doi: 10.1021/jp025771z

    CrossRef Google Scholar

    [160] Müller M, Schins J M. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J Phys Chem B 106, 3715–3723 (2002). doi: 10.1021/jp014012y

    CrossRef Google Scholar

    [161] Nan X L, Yang W Y, Xie X S. CARS microscopy lights up lipids in living cells. Biophoton Int 11, 44–47 (2004).

    Google Scholar

    [162] Rakic B, Sagan S M, Noestheden M, Bélanger S, Nan X L et al.Peroxisome proliferator–activated receptor α antagonism inhibits hepatitis C virus replication. Chem Biol 13, 23–30 (2006). doi: 10.1016/j.chembiol.2005.10.006

    CrossRef Google Scholar

    [163] Nan X L, Tonary A M, Stolow A, Xie X S, Pezacki J P et al.Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies. Chem Bio Chem 7, 1895–1897 (2006). doi: 10.1002/cbic.200600330

    CrossRef Google Scholar

    [164] Hellerer T, Axäng C, Brackmann C, Hillertz P, Pilon M et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci USA 104, 14658–14663 (2007). doi: 10.1073/pnas.0703594104

    CrossRef Google Scholar

    [165] Xie X S, Yu J, Yang W Y. Living cells as test tubes. Science 312, 228–230 (2006). doi: 10.1126/science.1127566

    CrossRef Google Scholar

    [166] Yen K, Le T T, Bansal A, Narasimhan S D, Cheng J X et al.A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5, e12810 (2010). doi: 10.1371/journal.pone.0012810

    CrossRef Google Scholar

    [167] Nan X L, Potma E O, Xie X S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys J 91, 728–735 (2006). doi: 10.1529/biophysj.105.074534

    CrossRef Google Scholar

    [168] Lyn R K, Kennedy D C, Stolow A, Ridsdale A, Pezacki J P et al.Dynamics of lipid droplets induced by the hepatitis C virus core protein. Biochem Biophys Res Commun 399, 518–524 (2010). doi: 10.1016/j.bbrc.2010.07.101

    CrossRef Google Scholar

    [169] Paar M, Jüngst C, Steiner N A, Magnes C, Sinner F et al.Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 287, 11164–11173 (2012). doi: 10.1074/jbc.M111.316794

    CrossRef Google Scholar

    [170] Evans C L, Potma E O, Puoris'haag M, Côté D, Lin C P et al.Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA 102, 16807–16812 (2005). doi: 10.1073/pnas.0508282102

    CrossRef Google Scholar

    [171] Breunig H G, Weinigel M, Bückle R, Kellner-Höfer M, Lademann J et al. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber. Laser Phys Lett 10, 025604 (2013). doi: 10.1088/1612-2011/10/2/025604

    CrossRef Google Scholar

    [172] Evans C L, Xie X S. Coherent anti-Stokes Raman Scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1, 883–909 (2008). doi: 10.1146/annurev.anchem.1.031207.112754

    CrossRef Google Scholar

    [173] Toytman I, Cohn K, Smith T, Simanovskii D, Palanker D.Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination. Opt Lett 32, 1941–1943 (2007). doi: 10.1364/OL.32.001941

    CrossRef Google Scholar

    [174] Brackmann C, Esguerra M, Olausson D, Delbro D, Krettek A et al.Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds. J Biomed Opt 16, 021115 (2011). doi: 10.1117/1.3534782

    CrossRef Google Scholar

    [175] Wang H W, Le T T, Cheng J X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Comm 281, 1813–1822 (2008). doi: 10.1016/j.optcom.2007.07.067

    CrossRef Google Scholar

    [176] Wang H F, Fu Y, Zickmund P, Shi R, Cheng J X.Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J 89, 581–591 (2005). doi: 10.1529/biophysj.105.061911

    CrossRef Google Scholar

    [177] Huff T B, Cheng J X. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J Microsc 225, 175–182 (2007). doi: 10.1111/j.1365-2818.2007.01729.x

    CrossRef Google Scholar

    [178] Fu Y, Wang H F, Huff T B, Shi R, Cheng J X. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res 85, 2870–2881 (2007). doi: 10.1002/jnr.21403

    CrossRef Google Scholar

    [179] Yookyung J, Ng J H, Keating C P, Senthil-Kumar P, Zhao J et al.Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS One 9, e94054 (2014). doi: 10.1371/journal.pone.0094054

    CrossRef Google Scholar

    [180] Evans C L, Xu X Y, Kesari S, Xie X S, Wong S T C et al.Chemically-selective imaging of brain structures with CARS microscopy. Opt Express 15, 12076–12087 (2007). doi: 10.1364/OE.15.012076

    CrossRef Google Scholar

    [181] Légaré F, Evans C L, Ganikhanov, Xie X S.Towards CARS endoscopy. Optics Express 14, 4427–4432 (2006). doi: 10.1364/OE.14.004427

    CrossRef Google Scholar

    [182] Camp Jr C H, Lee Y J, Heddleston J M, Hartshorn C M, Walker A R H et al.High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photon 8, 627–634(2014). doi: 10.1038/nphoton.2014.145

    CrossRef Google Scholar

    [183] Bocklitz T W, Salah F S, Vogler N, Heuke S, Chernavskaia O et al.Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer 16, 534 (2016). doi: 10.1186/s12885-016-2520-x

    CrossRef Google Scholar

    [184] Petersen D, Mavarani L, Niedieker D, Freier E, Tannapfel A et al.Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst 142, 1207–1215 (2017). doi: 10.1039/C6AN02072K

    CrossRef Google Scholar

    [185] Galli R, Uckermann O, Temme A, Leipnitz E, Meinhardt M et al. Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. J Biophoton 10, 404–414 (2017). doi: 10.1002/jbio.201500323

    CrossRef Google Scholar

    [186] Karuna A, Masia F, Wiltshire M, Errington R, Langbein W.Label-free volumetric quantitative imaging of the human somatic cell division by hyperspectral coherent anti-Stokes Raman scattering. Anal Chem 91, 2813–2821 (2019). doi: 10.1021/acs.analchem.8b04706

    CrossRef Google Scholar

    [187] Niedieker D, Grosserüschkamp F, Schreiner A, Barkovits K, Kötting C et al.Label-free identification of myopathological features with coherent anti-Stokes Raman scattering. Muscle Nerve 58, 456–459 (2018). doi: 10.1002/mus.26140

    CrossRef Google Scholar

    [188] Hirose K, Fukushima S, Fukushima T, Niioka H, Hashimoto M.Invited Article: Label-free nerve imaging with a coherent anti-Stokes Raman scattering rigid endoscope using two optical fibers for laser delivery. APL Photon 3, 092407 (2018). doi: 10.1063/1.5031817

    CrossRef Google Scholar

    [189] Kang E, Wang H F, Kwon I K, Robinson J, Cheng J X.In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy. Anal Chem 78, 8036–8043 (2006). doi: 10.1021/ac061218s

    CrossRef Google Scholar

    [190] Hartshorn C M, Lee Y J, Camp Jr C H, Liu Z, Heddleston J et al.Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy. Anal Chem 85, 8102–8111 (2013). doi: 10.1021/ac400671p

    CrossRef Google Scholar

    [191] Fussell A L, Grasmeijer F, Frijlink H W, de Boer A H, Offerhaus H L. CARS microscopy as a tool for studying the distribution of micronised drugs in adhesive mixtures for inhalation. J Raman Spectrosc 45, 495–500 (2014). doi: 10.1002/jrs.4515

    CrossRef Google Scholar

    [192] Tong L, Lu Y H, Lee R J, Cheng J X.Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-Stokes Raman scattering probe. J Phys Chem B 111, 9980–9985 (2007). doi: 10.1021/jp073478z

    CrossRef Google Scholar

    [193] Xu P S, Gullotti E, Tong L, Highley C B, Errabelli D R et al.Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 6, 190–201 (2009). doi: 10.1021/mp800137z

    CrossRef Google Scholar

    [194] Garrett N L, Lalatsa A, Begley D, Mihoreanu L, Uchegbu I F et al.Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy. J Raman Spectrosc 43, 681–688 (2012). doi: 10.1002/jrs.3170

    CrossRef Google Scholar

    [195] Darville N, Saarinen J, Isomäki A, Khriachtchev L, Cleeren D et al. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal–cell interactions. Eur J Pharm Biopharm 96, 338–348 (2015). doi: 10.1016/j.ejpb.2015.09.003

    CrossRef Google Scholar

    [196] Freudiger C W, Min W, Saar B G, Lu S J, Holtom G R et al.Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). doi: 10.1126/science.1165758

    CrossRef Google Scholar

    [197] Ozeki Y, Dake F, Kajiyama S, Fukui K, Itoh K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt Express 17, 3651–3658 (2009). doi: 10.1364/OE.17.003651

    CrossRef Google Scholar

    [198] Nandakumar P, Kovalev A, Volkmer A.Vibrational imaging based on stimulated Raman scattering microscopy. New J Phys 11, 033026 (2009). doi: 10.1088/1367-2630/11/3/033026

    CrossRef Google Scholar

    [199] Zhang D L, Slipchenko M N, Cheng J X. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. J Phys Chem Lett 2, 1248–1253 (2011). doi: 10.1021/jz200516n

    CrossRef Google Scholar

    [200] Andresen E R, Berto P, Rigneault H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt Lett 36, 2387–2389 (2011). doi: 10.1364/OL.36.002387

    CrossRef Google Scholar

    [201] Beier H T, Noojin G D, Rockwell B A. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt Express 19, 18885–18892 (2011). doi: 10.1364/OE.19.018885

    CrossRef Google Scholar

    [202] Slipchenko M N, Oglesbee R A, Zhang D L, Wu W, Cheng J X.Heterodyne detected nonlinear optical imaging in a lock-in free manner. J Biophoton 5, 801–807 (2012). doi: 10.1002/jbio.201200005

    CrossRef Google Scholar

    [203] Cheng J X, Xie X S, Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 350, aaa8870 (2015). doi: 10.1126/science.aaa8870

    CrossRef Google Scholar

    [204] Woodbury E J, Ng W K. Ruby laser operation in near IR. Proc Inst Radio Eng 50, 2367 (1962).

    Google Scholar

    [205] Owyoung A, Jones E D. Stimulated Raman spectroscopy using low-power cw lasers. Opt Lett 1, 152–154 (1977). doi: 10.1364/OL.1.000152

    CrossRef Google Scholar

    [206] Ploetz E, Laimgruber S, Berner S, Zinth W, Gilch P.Femtosecond stimulated Raman microscopy. Appl Phys B 87, 389–393 (2007). doi: 10.1007/s00340-007-2630-x

    CrossRef Google Scholar

    [207] Wang M C, Min W, Freudiger C W, Ruvkun G, Xie X S.RNAi screening for fat regulatory genes with SRS microscopy. Nat Methods 8, 135–138 (2011). doi: 10.1038/nmeth.1556

    CrossRef Google Scholar

    [208] Dou W, Zhang D L, Jung Y, Cheng J X, Umulis D M.Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. Biophys J 102, 1666–1675 (2012). doi: 10.1016/j.bpj.2012.01.057

    CrossRef Google Scholar

    [209] Wang P, Liu B, Zhang D L, Belew M Y, Tissenbaum H A et al.Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew Chem Int Ed 53, 11787–11792 (2014). doi: 10.1002/anie.201406029

    CrossRef Google Scholar

    [210] Hu C R, Zhang D L, Slipchenko M N, Cheng J X, Hu B.Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. J Biomed Opt 19, 086005 (2014). doi: 10.1117/1.JBO.19.8.086005

    CrossRef Google Scholar

    [211] Freudiger C W, Pfannl R, Orringer D A, Saar B G, Ji M B et al. Multicolored stain-free histopathology with coherent Raman imaging. Lab Invest 92, 1492–1502 (2012). doi: 10.1038/labinvest.2012.109

    CrossRef Google Scholar

    [212] Lu F K, Ji M B, Fu D, Ni X H, Freudiger C W et al.Multicolor stimulated Raman scattering (SRS) microscopy. Mol Phys 110, 1927–1932 (2012). doi: 10.1080/00268976.2012.695028

    CrossRef Google Scholar

    [213] Lu F K, Basu S, Igras V, Hoang M P, Ji M B et al.Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 112, 11624–11629 (2015). doi: 10.1073/pnas.1515121112

    CrossRef Google Scholar

    [214] Yue S H, Li J J, Lee S Y, Lee H J, Shao T et al.Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 19, 393–406 (2014). doi: 10.1016/j.cmet.2014.01.019

    CrossRef Google Scholar

    [215] Wang P, Li J J, Wang P, Hu C R, Zhang D L et al.Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated raman scattering microscopy. Angew Chem Int Ed 52, 13042–13046 (2013). doi: 10.1002/anie.201306234

    CrossRef Google Scholar

    [216] Li J J, Condello S, Thomes-Pepin J, Ma X X, Xia Y et al.Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314. (2017). doi: 10.1016/j.stem.2016.11.004

    CrossRef Google Scholar

    [217] Mittal R, Balu M, Krasieva T, Potma E O, Elkeeb L et al.Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg Med 45, 496–502 (2013).

    Google Scholar

    [218] Ji M B, Orringer D A, Freudiger C W, Ramkissoon S, Liu X H et al.Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med 5, 201ra119 (2013).

    Google Scholar

    [219] Jermyn M, Mok K, Mercier J, Desroches J, Pichette J et al.Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7, 274ra19 (2015). doi: 10.1126/scitranslmed.aaa2384

    CrossRef Google Scholar

    [220] Ji M B, Arbel M, Zhang L L, Freudiger C W, Hou S S et al.Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy. Sci Adv 4, eaat7715 (2018). doi: 10.1126/sciadv.aat7715

    CrossRef Google Scholar

    [221] Yan S, Cui S S, Ke K, Zhao B X, Liu X L et al.Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer. Anal Chem 90, 6362–6366 (2018). doi: 10.1021/acs.analchem.8b01312

    CrossRef Google Scholar

    [222] Wei L, Yu Y, Shen Y H, Wang M C, Min W.Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 110, 11226–11231 (2013). doi: 10.1073/pnas.1303768110

    CrossRef Google Scholar

    [223] Li J J, Cheng J X. Direct visualization of de novo lipogenesis in single living cells. Sci Rep 4, 6807 (2014).

    Google Scholar

    [224] Shen Y H, Xu F, Wei L, Hu F H, Min W.Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew Chem Int Ed 53, 5596–5599 (2014). doi: 10.1002/anie.201310725

    CrossRef Google Scholar

    [225] Li X S, Li Y, Jiang M J, Wu W J, He S C et al.Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy. Anal Chem 91, 2279–2287 (2019). doi: 10.1021/acs.analchem.8b04875

    CrossRef Google Scholar

    [226] Slipchenko M N, Chen H T, Ely D R, Jung Y, Carvajal M T et al.Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst 135, 2613–2619 (2010). doi: 10.1039/c0an00252f

    CrossRef Google Scholar

    [227] Fu D, Zhou J, Zhu W J S, Manley P W, Wang Y K et al.Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem 6, 614–622 (2014). doi: 10.1038/nchem.1961

    CrossRef Google Scholar

    [228] Chiu W S, Belsey N A, Garrett N L, Moger J, Delgado-Charro M B et al.Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 112, 7725–7730 (2015).

    Google Scholar

    [229] Wei L, Min W. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal Bioanal Chem 403, 2197–2202 (2012). doi: 10.1007/s00216-012-5890-1

    CrossRef Google Scholar

    [230] Fischer M C, Wilson J W, Robles F E, Warren W S.Invited Review Article: Pump-probe microscopy. Rev Sci Instrum 87, 031101 (2016). doi: 10.1063/1.4943211

    CrossRef Google Scholar

    [231] Dong P T, Chen J X. Pump-probe microscopy: theory, instrumentation, and application. Spectroscopy 32, 24–36 (2017).

    Google Scholar

    [232] Dong C Y, So P T, French T, Gratton E.Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J 69, 2234–2242 (1995). doi: 10.1016/S0006-3495(95)80148-7

    CrossRef Google Scholar

    [233] Fu D, Ye T, Matthews T E, Yurtsever G, Warren Sr W S.Two-color, two-photon, and excited-state absorption microscopy. J Biomed Opt 12, 054004 (2007). doi: 10.1117/1.2780173

    CrossRef Google Scholar

    [234] Dan F, Ye T, Matthews T, Chen B J, Yurtserver G et al.High-resolution in vivo imaging of blood vessels without labeling. Opt Lett 32, 2641–2643 (2007). doi: 10.1364/OL.32.002641

    CrossRef Google Scholar

    [235] Min W, Lu S J, Chong S S, Roy R, Holtom G R et al.Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009). doi: 10.1038/nature08438

    CrossRef Google Scholar

    [236] Piletic I R, Matthews T E, Warren W S. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. J Phys Chem A 114, 11483–11491 (2010). doi: 10.1021/jp103608d

    CrossRef Google Scholar

    [237] Matthews T E, Wilson J W, Degan S, Simpson M J, Jin J Y et al. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. Biomed Opt Express 2, 1576–1583 (2011). doi: 10.1364/BOE.2.001576

    CrossRef Google Scholar

    [238] Robles F E, Deb S, Wilson J W, Gainey C S, Selim M A et al.Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomed Opt Express6, 3631–3645 (2015). doi: 10.1364/BOE.6.003631

    CrossRef Google Scholar

    [239] Chen A J, Yuan X J, Li J J, Dong P T, Hamza I et al.Label-free imaging of heme dynamics in living organisms by transient absorption microscopy. Anal Chem 90, 3395–3401 (2018). doi: 10.1021/acs.analchem.7b05046

    CrossRef Google Scholar

    [240] Dong P T, Lin H N, Huang K C, Cheng J X.Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. Sci Adv 5, eaav0561 (2019). doi: 10.1126/sciadv.aav0561

    CrossRef Google Scholar

    [241] Tong L, Liu Y X, Dolash B D, Jung Y, Slipchenko M N et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nat Nanotechnol 7, 56–61 (2012).

    Google Scholar

    [242] Chen T, Lu F, Streets A M, Fei P, Quan J M et al. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. Nanoscale 5, 4701–4705 (2013). doi: 10.1039/c3nr00308f

    CrossRef Google Scholar

    [243] Chen T, Chen S H, Zhou J H, Liang D H, Chen X Y et al. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells. Nanoscale 6, 10536–10539 (2014). doi: 10.1039/C4NR03413A

    CrossRef Google Scholar

    [244] Li J J, Zhang W X, Chung T F, Slipchenko M N et al. Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. Sci Rep 5, 12394 (2015). doi: 10.1038/srep12394

    CrossRef Google Scholar

    [245] Liao C S, Slipchenko M N, Wang P, Li J J, Lee S Y et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci Appl 4, e265 (2015). doi: 10.1038/lsa.2015.38

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint