Citation: | Wei Liu, Dashan Dong, Hong Yang, et al. Robust and high‐speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto‐Electron Adv 3, 200022 (2020). doi: 10.29026/oea.2020.200022 |
[1] | Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J. An optically driven pump for microfluidics. Lab Chip 6, 735-739 (2006). doi: 10.1039/b601886f |
[2] | Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 12, 1144-1149 (2004). doi: 10.1364/OPEX.12.001144 |
[3] | Ahn J, Xu Z J, Bang J, Ju P, Gao X Y et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat Nanotechnol 15, 89-93 (2020). |
[4] | Zhu J M, Zhu X Q, Zuo Y F, Hu X J, Shi Y et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019). |
[5] | Beth R A. Mechanical detection and measurement of the angular momentum of light. Phys Rev 50, 115-125 (1936). doi: 10.1103/PhysRev.50.115 |
[6] | Lin C L, Wang I, Dollet B, Baldeck P L. Velocimetry microsensors driven by linearly polarized optical tweezers. Opt Lett 31, 329-331 (2006). doi: 10.1364/OL.31.000329 |
[7] | Li M M, Yan S H, Yao B L, Liang Y S, Han G X et al. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J Opt Soc Am A 33, 1341-1347 (2016). |
[8] | Liaw J W, Chen Y S, Kuo M K. Rotating Au nanorod and nanowire driven by circularly polarized light. Opt Express 22, 26005-26015 (2014). doi: 10.1364/OE.22.026005 |
[9] | Liaw J W, Chen Y S, Kuo M K. Maxwell stress induced optical torque upon gold prolate nanospheroid. Appl Phys A 122, 182 (2016). |
[10] | Friese M E J, Enger J, Rubinsztein-Dunlop H, Heckenberg N R. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 54, 1593-1596 (1996). doi: 10.1103/PhysRevA.54.1593 |
[11] | Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912-914 (2001). doi: 10.1126/science.1058591 |
[12] | Arita Y, Richards J M, Mazilu M, Spalding G C, Skelton Spesyvtseva S E et al. Rotational dynamics and heating of trapped nanovaterite particles. ACS Nano 10, 11505-11510 (2016). doi: 10.1021/acsnano.6b07290 |
[13] | Wei S B, Wang D P, Lin J, Yuan X C. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv 1, 180006 (2018). |
[14] | Parkin S, Knöner G, Singer W, Nieminen T A, Heckenberg N R et al. Optical torque on microscopic objects. Method Cell Biol 82, 525-561 (2007). doi: 10.1016/S0091-679X(06)82019-4 |
[15] | Yang Y, Brimicombe P D, Roberts N W, Dickinson M R, Osipov M et al. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt Express 16, 6877-6882 (2008). doi: 10.1364/OE.16.006877 |
[16] | Kuhn S, Kosloff A, Stickler B A, Patolsky F, Hornberger K et al. Full rotational control of levitated silicon nanorods. Optica 4, 356-360 (2017). doi: 10.1364/OPTICA.4.000356 |
[17] | Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348-350 (1998). doi: 10.1038/28566 |
[18] | Tong L, Miljković V D, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10, 268-273 (2010). doi: 10.1021/nl9034434 |
[19] | Cao Y Y, Song W H, Ding W Q, Sun F K, Zhu T T. Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams. Opt Express 22, 18113-18118 (2014). doi: 10.1364/OE.22.018113 |
[20] | Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys 32, 1455-1461 (1999). doi: 10.1088/0022-3727/32/13/304 |
[21] | La Porta A, Wang M D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92, 190801 (2004). doi: 10.1103/PhysRevLett.92.190801 |
[22] | Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett 56, 665-667 (1990). doi: 10.1063/1.102730 |
[23] | Cheng J C, Nafie L A, Allen S D, Braunstein A I. Photoelastic modulator for the 0.55-13-μm range. Appl Opt 15, 1960-1965 (1976). doi: 10.1364/AO.15.001960 |
[24] | Yamaguchi R, Nose T, Sato S. Liquid crystal polarizers with axially symmetrical properties. Jpn J Appl Phys 28, 1730-1731 (1989). doi: 10.1143/JJAP.28.1730 |
[25] | Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt Lett 21, 1948-1950 (1996). doi: 10.1364/OL.21.001948 |
[26] | Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl Phys Lett 89, 121105 (2006). doi: 10.1063/1.2355456 |
[27] | Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 18, 7173-7183 (2010). doi: 10.1364/OE.18.007173 |
[28] | Liu M J, Chen J, Zhang Y, Shi Y, Zhao C L et al. Generation of coherence vortex by modulating the correlation structure of random lights. Photon Res 7, 1485-1492 (2019). doi: 10.1364/PRJ.7.001485 |
[29] | Xiao F J, Shang W Y, Zhu W R, Han L et al., Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer. Photon Res 6, 157-161 (2018). doi: 10.1364/PRJ.6.000157 |
[30] | Chen R S, Wang J H, Zhang X Q, Yao J N, Ming H et al. Fiber-based mode converter for generating optical vortex beams. Opto-Electron Adv 1, 180003 (2018). |
[31] | Donnay J D H, Donnay G. Optical determination of water content in spherulitic vaterite. Acta Cryst 22, 312-314 (1967). doi: 10.1107/S0365110X67000532 |
[32] | Tracy S L, Williams D A, Jennings H M. The growth of calcite spherulites from solution: Ⅱ. Kinetics of formation. J Cryst Growth 193, 382-388 (1998). doi: 10.1016/S0022-0248(98)00521-1 |
[33] | Parkin S J, Vogel R, Persson M, Funk M, Loke V L Y et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt Express 17, 21944-21955 (2009). doi: 10.1364/OE.17.021944 |
[34] | Bishop A I, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92, 198104 (2004). doi: 10.1103/PhysRevLett.92.198104 |
[35] | Vogel R, Persson M, Feng C, Parkin S J, Nieminen T A et al. Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25, 11672-11679 (2009). doi: 10.1021/la901532x |
[36] | Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R. Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quant Spectrosc Radiat Transf 70, 627-637 (2001). doi: 10.1016/S0022-4073(01)00034-6 |
[37] | Bonin K D, Kourmanov B, Walker T G. Light torque nanocontrol, nanomotors and nanorockers. Opt Express 10, 984-989 (2002). doi: 10.1364/OE.10.000984 |
[38] | Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical measurement of microscopic torques. J Mod Opt 48, 405-413 (2001). doi: 10.1080/09500340108230922 |
[39] | Fei P, Nie J, Lee J, Ding Y C, Li S R et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens. Adv Photon 1, 016002 (2019). |
[40] | Li J J, Matlock A C, Li Y Z, Chen Q, Zuo C et al. High-speed in vitro intensity diffraction tomography. Adv Photon 1, 066004 (2019). |
[41] | Feng S J, Chen Q, Gu G H, Tao T Y, Zhang L et al. Fringe pattern analysis using deep learning. Adv Photon 1, 025001 (2019). |
[42] | Wang H Y, Zheng J, Fu Y F, Wang C L, Huang X R et al. Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin Opt Lett 17, 052303 (2019). doi: 10.3788/COL201917.052303 |
[43] | Rocco D, Gili V F, Ghirardini L, Carletti L, Favero I et al. Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization[Invited]. Photon Res 6, B6-B12 (2018). |
[44] | Nodal Stevens D J, Ávila B J, Rodríguez-Lara B M. Necklaces of PT-symmetric dimers. Photon Res 6, A31-A37 (2018). doi: 10.1364/PRJ.6.000A31 |
[45] | Sun S, Zhang C, Zhang H T, Gao Y S, Yi N B et al. Enhancing magnetic dipole emission with magnetic metamaterials. Chin Opt Lett 16, 050008 (2018). doi: 10.3788/COL201816.050008 |
[46] | Liu C, Chen L, Wu T S, Liu Y M, Li J et al. All-dielectric three-element transmissive Huygens' metasurface performing anomalous refraction. Photon Res 7, 1501-1510 (2019). doi: 10.1364/PRJ.7.001501 |
OEA-3-8-200022-S1.avi | |
OEA-3-8-200022-S2.avi | |
Design principle of generating a linearly polarized beams with a rotating polarization angle based on optical heterodyne interference.
Schematic diagram of the experiment.
Verifying the polarization orientation distribution after passing through a LC-VP device.
Video snapshots of disc-shaped vaterite particles recorded by optical tweezer apparatus.
The scattered li ght signals o f one trapped vaterite particle.