Wei Liu, Dashan Dong, Hong Yang, et al. Robust and high‐speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto‐Electron Adv 3, 200022 (2020). doi: 10.29026/oea.2020.200022
Citation: Wei Liu, Dashan Dong, Hong Yang, et al. Robust and high‐speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto‐Electron Adv 3, 200022 (2020). doi: 10.29026/oea.2020.200022

Original Article Open Access

Robust and high‐speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference

More Information
  • The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque, which is susceptible to the mechanical and morphological properties of individual particle. Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness. The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields. The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved. The proposed method will find promising applications in optically driven micro-gears, fluidic pumps and rotational micro-rheology.
  • 加载中
  • [1] Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J. An optically driven pump for microfluidics. Lab Chip 6, 735-739 (2006). doi: 10.1039/b601886f

    CrossRef Google Scholar

    [2] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 12, 1144-1149 (2004). doi: 10.1364/OPEX.12.001144

    CrossRef Google Scholar

    [3] Ahn J, Xu Z J, Bang J, Ju P, Gao X Y et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat Nanotechnol 15, 89-93 (2020).

    Google Scholar

    [4] Zhu J M, Zhu X Q, Zuo Y F, Hu X J, Shi Y et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019).

    Google Scholar

    [5] Beth R A. Mechanical detection and measurement of the angular momentum of light. Phys Rev 50, 115-125 (1936). doi: 10.1103/PhysRev.50.115

    CrossRef Google Scholar

    [6] Lin C L, Wang I, Dollet B, Baldeck P L. Velocimetry microsensors driven by linearly polarized optical tweezers. Opt Lett 31, 329-331 (2006). doi: 10.1364/OL.31.000329

    CrossRef Google Scholar

    [7] Li M M, Yan S H, Yao B L, Liang Y S, Han G X et al. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J Opt Soc Am A 33, 1341-1347 (2016).

    Google Scholar

    [8] Liaw J W, Chen Y S, Kuo M K. Rotating Au nanorod and nanowire driven by circularly polarized light. Opt Express 22, 26005-26015 (2014). doi: 10.1364/OE.22.026005

    CrossRef Google Scholar

    [9] Liaw J W, Chen Y S, Kuo M K. Maxwell stress induced optical torque upon gold prolate nanospheroid. Appl Phys A 122, 182 (2016).

    Google Scholar

    [10] Friese M E J, Enger J, Rubinsztein-Dunlop H, Heckenberg N R. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 54, 1593-1596 (1996). doi: 10.1103/PhysRevA.54.1593

    CrossRef Google Scholar

    [11] Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912-914 (2001). doi: 10.1126/science.1058591

    CrossRef Google Scholar

    [12] Arita Y, Richards J M, Mazilu M, Spalding G C, Skelton Spesyvtseva S E et al. Rotational dynamics and heating of trapped nanovaterite particles. ACS Nano 10, 11505-11510 (2016). doi: 10.1021/acsnano.6b07290

    CrossRef Google Scholar

    [13] Wei S B, Wang D P, Lin J, Yuan X C. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv 1, 180006 (2018).

    Google Scholar

    [14] Parkin S, Knöner G, Singer W, Nieminen T A, Heckenberg N R et al. Optical torque on microscopic objects. Method Cell Biol 82, 525-561 (2007). doi: 10.1016/S0091-679X(06)82019-4

    CrossRef Google Scholar

    [15] Yang Y, Brimicombe P D, Roberts N W, Dickinson M R, Osipov M et al. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt Express 16, 6877-6882 (2008). doi: 10.1364/OE.16.006877

    CrossRef Google Scholar

    [16] Kuhn S, Kosloff A, Stickler B A, Patolsky F, Hornberger K et al. Full rotational control of levitated silicon nanorods. Optica 4, 356-360 (2017). doi: 10.1364/OPTICA.4.000356

    CrossRef Google Scholar

    [17] Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348-350 (1998). doi: 10.1038/28566

    CrossRef Google Scholar

    [18] Tong L, Miljković V D, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10, 268-273 (2010). doi: 10.1021/nl9034434

    CrossRef Google Scholar

    [19] Cao Y Y, Song W H, Ding W Q, Sun F K, Zhu T T. Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams. Opt Express 22, 18113-18118 (2014). doi: 10.1364/OE.22.018113

    CrossRef Google Scholar

    [20] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys 32, 1455-1461 (1999). doi: 10.1088/0022-3727/32/13/304

    CrossRef Google Scholar

    [21] La Porta A, Wang M D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92, 190801 (2004). doi: 10.1103/PhysRevLett.92.190801

    CrossRef Google Scholar

    [22] Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett 56, 665-667 (1990). doi: 10.1063/1.102730

    CrossRef Google Scholar

    [23] Cheng J C, Nafie L A, Allen S D, Braunstein A I. Photoelastic modulator for the 0.55-13-μm range. Appl Opt 15, 1960-1965 (1976). doi: 10.1364/AO.15.001960

    CrossRef Google Scholar

    [24] Yamaguchi R, Nose T, Sato S. Liquid crystal polarizers with axially symmetrical properties. Jpn J Appl Phys 28, 1730-1731 (1989). doi: 10.1143/JJAP.28.1730

    CrossRef Google Scholar

    [25] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt Lett 21, 1948-1950 (1996). doi: 10.1364/OL.21.001948

    CrossRef Google Scholar

    [26] Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl Phys Lett 89, 121105 (2006). doi: 10.1063/1.2355456

    CrossRef Google Scholar

    [27] Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 18, 7173-7183 (2010). doi: 10.1364/OE.18.007173

    CrossRef Google Scholar

    [28] Liu M J, Chen J, Zhang Y, Shi Y, Zhao C L et al. Generation of coherence vortex by modulating the correlation structure of random lights. Photon Res 7, 1485-1492 (2019). doi: 10.1364/PRJ.7.001485

    CrossRef Google Scholar

    [29] Xiao F J, Shang W Y, Zhu W R, Han L et al., Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer. Photon Res 6, 157-161 (2018). doi: 10.1364/PRJ.6.000157

    CrossRef Google Scholar

    [30] Chen R S, Wang J H, Zhang X Q, Yao J N, Ming H et al. Fiber-based mode converter for generating optical vortex beams. Opto-Electron Adv 1, 180003 (2018).

    Google Scholar

    [31] Donnay J D H, Donnay G. Optical determination of water content in spherulitic vaterite. Acta Cryst 22, 312-314 (1967). doi: 10.1107/S0365110X67000532

    CrossRef Google Scholar

    [32] Tracy S L, Williams D A, Jennings H M. The growth of calcite spherulites from solution: Ⅱ. Kinetics of formation. J Cryst Growth 193, 382-388 (1998). doi: 10.1016/S0022-0248(98)00521-1

    CrossRef Google Scholar

    [33] Parkin S J, Vogel R, Persson M, Funk M, Loke V L Y et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt Express 17, 21944-21955 (2009). doi: 10.1364/OE.17.021944

    CrossRef Google Scholar

    [34] Bishop A I, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92, 198104 (2004). doi: 10.1103/PhysRevLett.92.198104

    CrossRef Google Scholar

    [35] Vogel R, Persson M, Feng C, Parkin S J, Nieminen T A et al. Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25, 11672-11679 (2009). doi: 10.1021/la901532x

    CrossRef Google Scholar

    [36] Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R. Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quant Spectrosc Radiat Transf 70, 627-637 (2001). doi: 10.1016/S0022-4073(01)00034-6

    CrossRef Google Scholar

    [37] Bonin K D, Kourmanov B, Walker T G. Light torque nanocontrol, nanomotors and nanorockers. Opt Express 10, 984-989 (2002). doi: 10.1364/OE.10.000984

    CrossRef Google Scholar

    [38] Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical measurement of microscopic torques. J Mod Opt 48, 405-413 (2001). doi: 10.1080/09500340108230922

    CrossRef Google Scholar

    [39] Fei P, Nie J, Lee J, Ding Y C, Li S R et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens. Adv Photon 1, 016002 (2019).

    Google Scholar

    [40] Li J J, Matlock A C, Li Y Z, Chen Q, Zuo C et al. High-speed in vitro intensity diffraction tomography. Adv Photon 1, 066004 (2019).

    Google Scholar

    [41] Feng S J, Chen Q, Gu G H, Tao T Y, Zhang L et al. Fringe pattern analysis using deep learning. Adv Photon 1, 025001 (2019).

    Google Scholar

    [42] Wang H Y, Zheng J, Fu Y F, Wang C L, Huang X R et al. Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin Opt Lett 17, 052303 (2019). doi: 10.3788/COL201917.052303

    CrossRef Google Scholar

    [43] Rocco D, Gili V F, Ghirardini L, Carletti L, Favero I et al. Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization[Invited]. Photon Res 6, B6-B12 (2018).

    Google Scholar

    [44] Nodal Stevens D J, Ávila B J, Rodríguez-Lara B M. Necklaces of PT-symmetric dimers. Photon Res 6, A31-A37 (2018). doi: 10.1364/PRJ.6.000A31

    CrossRef Google Scholar

    [45] Sun S, Zhang C, Zhang H T, Gao Y S, Yi N B et al. Enhancing magnetic dipole emission with magnetic metamaterials. Chin Opt Lett 16, 050008 (2018). doi: 10.3788/COL201816.050008

    CrossRef Google Scholar

    [46] Liu C, Chen L, Wu T S, Liu Y M, Li J et al. All-dielectric three-element transmissive Huygens' metasurface performing anomalous refraction. Photon Res 7, 1501-1510 (2019). doi: 10.1364/PRJ.7.001501

    CrossRef Google Scholar

  • OEA-3-8-200022-S1.avi
    OEA-3-8-200022-S2.avi
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint