Citation: | Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008 |
[1] | Pedrotti FL, Pedrotti LS. Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987). |
[2] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[3] | Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009 |
[4] | Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213 |
[5] | Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186 |
[6] | Ding XM, Monticone F, Zhang K, Zhang L, Gao DL et al. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv Mater 27, 1195–1200 (2015). doi: 10.1002/adma.201405047 |
[7] | Li ZY, Kim MH, Wang C, Han ZH, Shrestha S et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotechnol 12, 675–683 (2017). doi: 10.1038/nnano.2017.50 |
[8] | Yue FY, Zhang CM, Zang XF, Wen DD, Gerardot BD et al. High-resolution grayscale image hidden in a laser beam. Light Sci Appl 7, 17129 (2018). doi: 10.1038/lsa.2017.129 |
[9] | Divitt S, Zhu WQ, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science 364, 890–894 (2019). doi: 10.1126/science.aav9632 |
[10] | Ma XL, Pu MB, Li X, Guo YH, Luo XG. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). doi: 10.29026/oea.2019.180023 |
[11] | Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029 |
[12] | Dou KH, Xie X, Pu MB, Li X, Ma XL et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). doi: 10.29026/oea.2020.190005 |
[13] | Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807 |
[14] | Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[15] | Huang K, Dong ZG, Mei ST, Zhang L, Liu YJ et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10, 500–509 (2016). doi: 10.1002/lpor.201500314 |
[16] | Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[17] | Li LL, Cui TJ, Ji W, Liu S, Ding J et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 8, 197 (2017). doi: 10.1038/s41467-017-00164-9 |
[18] | Arbabi E, Kamali SM, Arbabi A, Faraon A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics 6, 2712–2718 (2019). doi: 10.1021/acsphotonics.9b00678 |
[19] | Feng H, Li QT, Wan WP, Song JH, Gong QH et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019). doi: 10.1021/acsphotonics.9b01017 |
[20] | Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644 |
[21] | Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS et al. Mems-tunable dielectric metasurface lens. Nat Commun 9, 812 (2018). doi: 10.1038/s41467-018-03155-6 |
[22] | Yang ZY, Wang ZK, Wang YX, Feng X, Zhao M et al. Generalized hartmann-shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun 9, 4607 (2018). doi: 10.1038/s41467-018-07056-6 |
[23] | Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of stokes parameters. Optica 2, 716–723 (2015). doi: 10.1364/OPTICA.2.000716 |
[24] | Chen WT, Török P, Foreman MR, Liao CY, Tsai WY et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016). doi: 10.1088/0957-4484/27/22/224002 |
[25] | Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494 |
[26] | Wang B, Dong FL, Li QT, Yang D, Sun CW et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326 |
[27] | Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016). doi: 10.1364/OPTICA.3.000628 |
[28] | Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819–1824 (2017). doi: 10.1021/acs.nanolett.6b05137 |
[29] | Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017). doi: 10.1364/OPTICA.4.000625 |
[30] | Avayu O, Almeida E, Prior P, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun 8, 14992 (2017). doi: 10.1038/ncomms14992 |
[31] | Zhou Y, Kravchenko II, Wang H, Nolen JR, Gu G et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett 18, 7529–7537 (2018). doi: 10.1021/acs.nanolett.8b03017 |
[32] | Wang SM, Wu PC, Su V, Lai YC, Chu CH et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7 |
[33] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[34] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[35] | Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x |
[36] | Chen WT, Zhu AY, Sisler J, Huang YW, Yousef KMA et al. Broadband achromatic metasurface-refractive optics. Nano Lett 18, 7801–7808 (2018). doi: 10.1021/acs.nanolett.8b03567 |
[37] | Hsiao HH, Chen YH, Lin RJ, Wu PC, Wang SM et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv Optical Mater 6, 1800031 (2018). doi: 10.1002/adom.201800031 |
[38] | Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 8, 67 (2019). doi: 10.1038/s41377-019-0178-2 |
[39] | Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y |
[40] | Chung H, Miller OD. High-NA achromatic metalenses by inverse design. arXiv preprint arXiv: 1905.09213 (2019). |
[41] | Banerji S, Meem M, Majumder A, Dvonch C, Sensale-Rodriguez B et al. Single flat lens enabling imaging in the short-wave infra-red (SWIR) band. OSA Contin 2, 2968–2974 (2019). doi: 10.1364/OSAC.2.002968 |
Schematic for bilayer broadband achromatic metalens. It has the same focal plane over a large continuous wavelength region. Inset: Oblique view of a unit cell of a bilayer Si nanopillars with different heights h1 = 850 nm, h2 = 1500 nm, in-plane cross-sectional dimensions Dx = 420 nm, Dy = 190 nm and lattice constant P = 500 nm, on a SiO2 substrate. Right: The top view of each layer.
(a) Simulated polarization conversion efficiency of the top rectangular nanopillar as a function of wavelengths from 1000 nm to 1700 nm. Each nanopillar with 500 nm periods, in-plane cross-sectional dimensions Dx = 420 nm, Dy = 190 nm. (b, c) Transmission coefficient and phase map of the bottom cylindrical nanopillar with different diameters d as a function of wavelength from 1000 nm to 1700 nm. (d) Phase spectra for cylindrical nanopillar with four different diameters as a function of frequency.
The phase profile of bilayer achromatic metalens. (a) The ideal phase profile at the
Simulated verification of chromatic and achromatic metalens. (a, b) Numerical intensity profiles of broadband chromatic (a) and achromatic (b) metalens with NA = 0.15 at various incident wavelengths. The red dashed line indicates the position of the focal plane. (c, d) Normalized intensity profiles along the red dashed lines of (b). Scale bar: 6 μm.
Performance of broadband achromatic metalens. (a) The focal length shift values of both chromatic and achromatic metalenses as a function of incident wavelength. (b) The FWHM of the focal spots as a function of indent wavelength. (c) The efficiency of achromatic metalens as a function of incident wavelength.
The influence of structural deviations on the lensing quality. (a) – (d) The simulated focal intensity profiles of bilayer metalens with perfect alignment (a), misalignment of 500 nm (b), 1 μm (c) and 1.5 μm (d) between two metasurface layers at three different wavelengths.