Citation: | Liu J, Zheng M, Xiong ZJ, Li ZY. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021).. doi: 10.29026/oea.2021.200015 |
[1] | Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986). doi: 10.1364/OL.11.000288 |
[2] | Liu J, Li ZY. Controlled mechanical motions of microparticles in optical tweezers. Micromachines (Basel) 9, 232 (2018). doi: 10.3390/mi9050232 |
[3] | Guo HL, Li ZY. Optical tweezers technique and its applications. Sci China Phys, Mech Astron 56, 2351–2360 (2013). doi: 10.1007/s11433-013-5355-3 |
[4] | Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999). doi: 10.1126/science.283.5408.1689 |
[5] | Liu W, Dong DS, Yang H, Gong QH, Shi KB. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto-Electron Adv 3, 200022 (2020). doi: 10.29026/oea.2020.200022 |
[6] | Helgadottir S, Argun A, Volpe G. Digital video microscopy enhanced by deep learning. Optica 6, 506–513 (2019). doi: 10.1364/OPTICA.6.000506 |
[7] | Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat Commun 6, 5885 (2015). doi: 10.1038/ncomms6885 |
[8] | Hay RF, Gibson GM, Lee MP, Padgett MJ, Phillips DB. Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation. Opt Express 22, 18662–18667 (2014). doi: 10.1364/OE.22.018662 |
[9] | Hajjoul H, Mathon J, Viero Y, Bancaud A. Optimized micromirrors for three-dimensional single-particle tracking in living cells. Appl Phys Lett 98, 243701 (2011). doi: 10.1063/1.3599586 |
[10] | Huang L, Guo HL, Li KL, Chen YH, Feng BH et al. Three dimensional force detection of gold nanoparticles using backscattered light detection. J Appl Phys 113, 113103 (2013). doi: 10.1063/1.4795272 |
[11] | Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994). doi: 10.1038/368113a0 |
[12] | Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong LM, Käll M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015). doi: 10.1021/acsnano.5b00286 |
[13] | Rahimzadegan A, Fruhnert M, Alaee R, Fernandez-Corbaton I, Rockstuhl C. Optical force and torque on dipolar dual chiral particles. Phys Rev B 94, 125123 (2016). doi: 10.1103/PhysRevB.94.125123 |
[14] | Melzer JE, McLeod E. Fundamental limits of optical tweezer nanoparticle manipulation speeds. ACS Nano 12, 2440–2447 (2018). doi: 10.1021/acsnano.7b07914 |
[15] | Kim K, Yoon J, Park Y. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343–346 (2015). doi: 10.1364/OPTICA.2.000343 |
[16] | Qin JQ, Wang XL, Ding J, Chen J, Fan YX et al. FDTD approach to optical forces of tightly focused vector beams on metal particles. Opt Express 17, 8407–8416 (2009). doi: 10.1364/OE.17.008407 |
[17] | Nieminen TA, Loke VLY, Stilgoe AB, Knöner G, Brańczyk AM et al. Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9, S196–S203 (2007). doi: 10.1088/1464-4258/9/8/S12 |
[18] | Stilgoe AB, Mallon MJ, Cao YY, Nieminen TA, Rubinsztein-Dunlop H. Optical tweezers toolbox: better, faster, cheaper; choose all three. Proc SPIE 8458, 84582E (2012). doi: 10.1117/12.929365 |
[19] | Zong YW, Liu J, Liu R, Guo HL, Yang MC et al. An optically driven bistable janus rotor with patterned metal coatings. ACS Nano 9, 10844–10851 (2015). doi: 10.1021/acsnano.5b03565 |
[20] | Potoček V, Barnett SM. Generalized ray optics and orbital angular momentum carrying beams. New J Phys 17, 103034 (2015). doi: 10.1088/1367-2630/17/10/103034 |
[21] | Liu J, Zhang C, Zong YW, Guo HL, Li ZY. Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle. Photon Res 3, 265–274 (2015). doi: 10.1364/PRJ.3.000265 |
[22] | Hajizadeh F, Shao L, Andrén D, Johansson P, Rubinsztein-Dunlop H et al. Brownian fluctuations of an optically rotated nanorod. Optica 4, 746–751 (2017). doi: 10.1364/OPTICA.4.000746 |
[23] | Simon A, Libchaber A. Escape and synchronization of a Brownian particle. Phys Rev Lett 68, 3375–3378 (1992). doi: 10.1103/PhysRevLett.68.3375 |
[24] | Bui AAM, Stilgoe AB, Lenton ICD, Gibson LJ, Kashchuk AV et al. Theory and practice of simulation of optical tweezers. J Quant Spectrosc Radiat Transf 195, 66–75 (2017). doi: 10.1016/j.jqsrt.2016.12.026 |
[25] | Sanderse B, Koren B. Accuracy analysis of explicit Runge–Kutta methods applied to the incompressible Navier–Stokes equations. J Comput Phys 231, 3041–3063 (2012). doi: 10.1016/j.jcp.2011.11.028 |
[26] | Zingg DW, Chisholm TT. Runge–Kutta methods for linear ordinary differential equations. Appl Numer Math 31, 227–238 (1999). doi: 10.1016/S0168-9274(98)00129-9 |
[27] | Ramos H, Vigo-Aguiar J. A fourth-order Runge–Kutta method based on BDF-type Chebyshev approximations. J Comput Appl Math 204, 124–136 (2007). doi: 10.1016/j.cam.2006.04.033 |
[28] | Simmons RM, Finer JT, Chu S, Spudich JA. Quantitative measurements of force and displacement using an optical trap. Biophys J 70, 1813–1822 (1996). doi: 10.1016/S0006-3495(96)79746-1 |
Video S1: 1Rx.avi | |
Video S2: 2Rz.avi | |
Video S3: 3Vx.avi | |
Video S4: 4Vz.avi | |
Video S5: 5RxVz.avi | |
(a) Schematic of basic optical tweezers. A single laser beam is focused by a high numerical aperture objective lens to form a stable optical trap for microscale particle. (b) and (c) illustrate the calculated optical force acting on a micro-sphere when it moves along the x-axis and z-axis, respectively, in the optical tweezers at the laser power P = 10 mW. Here, the two most important features of optical tweezers are shown: the maximum reverse axial force that characterizes the strength of the trap, and spring constants (the slope of the fit line). (d) and (e) display the calculated optical torque acting on a micro-sphere when it moves along the x-axis and z-axis, respectively.
The dynamic process of the micro-sphere in an optical tweezers. Plots of the (a) position, (b) velocity, (c) angular velocity, and (d) optical force versus time under the initial condition of r0=[0,0,1] μm, v0=[0,0,0] μm/s, ϕ0=[0,0,0] rad, and ω0=[0,0,0] rad/s.
Mechanical motion dynamics of the micro-sphere at different initial positions in the horizontal trapping plane. (a) The x-directional trajectories of the micro-sphere at different initial positions in the x-axis in the optical tweezers with r0x=0.5, 1.0, 1.5, 1.8, 1.9, and 2.0 μm. (b)−(d) display the temporal evolution of the x- and y- and z- directional trajectory, optical force, drag force, and resultant force, respectively, when the micro-sphere is set at the initial position r0x=1.9 μm. (e) and (f) display the temporal evolution of the optical force and the drag force, and the resultant force, respectively, when r0x=2.0 μm.
The 3D trajectories of the micro-sphere in the optical tweezers at different initial positions in the x-axis with r0x=0.5, 1.0, 1.5, 1.8, 1.9, and 2 μm.
Mechanical motion dynamics of the micro-sphere at different initial positions along the optical axis. (a) The z-directional trajectories of the micro-sphere at different initial positions in the z-axis in the optical tweezers with r0x=−2.0, −1.5, −1.0, −0.5, 1.0, 1.4, 1.6, 1.7, 1.75 and 1.9 μm. (b) and (c) The sketches of the optical force and the drag force, and the resultant force over time, respectively, when the micro-sphere is set at the initial position r0x=1.7 μm.
The 3D trajectories of the micro-sphere at different initial velocities in the x-axis in the optical tweezers with v0x=100, 1×104, 1×106, 5×106, 7.5×106, 7.75×106, and 8×106 μm/s.
(a) The 3D trajectories of a micro-sphere at different initial velocities in the z-axis with v0x=1×106, 5×106, 6×106, and 6.5×106 μm/s, when the initial position is r0x=[1,0,0] μm. The plots of (b) the optical force and drag force, and (c) the resultant force over time of the micro-sphere when v0=[6.5 × 106,0,0] μm/s, and r0x=[1,0,0] μm.