Liu J, Zheng M, Xiong ZJ, Li ZY. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021).. doi: 10.29026/oea.2021.200015
Citation: Liu J, Zheng M, Xiong ZJ, Li ZY. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021).. doi: 10.29026/oea.2021.200015

Original Article Open Access

3D dynamic motion of a dielectric micro-sphere within optical tweezers

More Information
  • Known as laser trapping, optical tweezers, with nanometer accuracy and pico-newton precision, plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines. In order to advance the flourishing applications for those achievements, it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field. In this paper, we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers. With the influence of viscosity force and torque taken into account, we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle. The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process. Even in a simple pair of optical tweezers, the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration, deceleration, and turning. These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.
  • 加载中
  • [1] Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986). doi: 10.1364/OL.11.000288

    CrossRef Google Scholar

    [2] Liu J, Li ZY. Controlled mechanical motions of microparticles in optical tweezers. Micromachines (Basel) 9, 232 (2018). doi: 10.3390/mi9050232

    CrossRef Google Scholar

    [3] Guo HL, Li ZY. Optical tweezers technique and its applications. Sci China Phys, Mech Astron 56, 2351–2360 (2013). doi: 10.1007/s11433-013-5355-3

    CrossRef Google Scholar

    [4] Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999). doi: 10.1126/science.283.5408.1689

    CrossRef Google Scholar

    [5] Liu W, Dong DS, Yang H, Gong QH, Shi KB. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto-Electron Adv 3, 200022 (2020). doi: 10.29026/oea.2020.200022

    CrossRef Google Scholar

    [6] Helgadottir S, Argun A, Volpe G. Digital video microscopy enhanced by deep learning. Optica 6, 506–513 (2019). doi: 10.1364/OPTICA.6.000506

    CrossRef Google Scholar

    [7] Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat Commun 6, 5885 (2015). doi: 10.1038/ncomms6885

    CrossRef Google Scholar

    [8] Hay RF, Gibson GM, Lee MP, Padgett MJ, Phillips DB. Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation. Opt Express 22, 18662–18667 (2014). doi: 10.1364/OE.22.018662

    CrossRef Google Scholar

    [9] Hajjoul H, Mathon J, Viero Y, Bancaud A. Optimized micromirrors for three-dimensional single-particle tracking in living cells. Appl Phys Lett 98, 243701 (2011). doi: 10.1063/1.3599586

    CrossRef Google Scholar

    [10] Huang L, Guo HL, Li KL, Chen YH, Feng BH et al. Three dimensional force detection of gold nanoparticles using backscattered light detection. J Appl Phys 113, 113103 (2013). doi: 10.1063/1.4795272

    CrossRef Google Scholar

    [11] Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994). doi: 10.1038/368113a0

    CrossRef Google Scholar

    [12] Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong LM, Käll M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015). doi: 10.1021/acsnano.5b00286

    CrossRef Google Scholar

    [13] Rahimzadegan A, Fruhnert M, Alaee R, Fernandez-Corbaton I, Rockstuhl C. Optical force and torque on dipolar dual chiral particles. Phys Rev B 94, 125123 (2016). doi: 10.1103/PhysRevB.94.125123

    CrossRef Google Scholar

    [14] Melzer JE, McLeod E. Fundamental limits of optical tweezer nanoparticle manipulation speeds. ACS Nano 12, 2440–2447 (2018). doi: 10.1021/acsnano.7b07914

    CrossRef Google Scholar

    [15] Kim K, Yoon J, Park Y. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343–346 (2015). doi: 10.1364/OPTICA.2.000343

    CrossRef Google Scholar

    [16] Qin JQ, Wang XL, Ding J, Chen J, Fan YX et al. FDTD approach to optical forces of tightly focused vector beams on metal particles. Opt Express 17, 8407–8416 (2009). doi: 10.1364/OE.17.008407

    CrossRef Google Scholar

    [17] Nieminen TA, Loke VLY, Stilgoe AB, Knöner G, Brańczyk AM et al. Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9, S196–S203 (2007). doi: 10.1088/1464-4258/9/8/S12

    CrossRef Google Scholar

    [18] Stilgoe AB, Mallon MJ, Cao YY, Nieminen TA, Rubinsztein-Dunlop H. Optical tweezers toolbox: better, faster, cheaper; choose all three. Proc SPIE 8458, 84582E (2012). doi: 10.1117/12.929365

    CrossRef Google Scholar

    [19] Zong YW, Liu J, Liu R, Guo HL, Yang MC et al. An optically driven bistable janus rotor with patterned metal coatings. ACS Nano 9, 10844–10851 (2015). doi: 10.1021/acsnano.5b03565

    CrossRef Google Scholar

    [20] Potoček V, Barnett SM. Generalized ray optics and orbital angular momentum carrying beams. New J Phys 17, 103034 (2015). doi: 10.1088/1367-2630/17/10/103034

    CrossRef Google Scholar

    [21] Liu J, Zhang C, Zong YW, Guo HL, Li ZY. Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle. Photon Res 3, 265–274 (2015). doi: 10.1364/PRJ.3.000265

    CrossRef Google Scholar

    [22] Hajizadeh F, Shao L, Andrén D, Johansson P, Rubinsztein-Dunlop H et al. Brownian fluctuations of an optically rotated nanorod. Optica 4, 746–751 (2017). doi: 10.1364/OPTICA.4.000746

    CrossRef Google Scholar

    [23] Simon A, Libchaber A. Escape and synchronization of a Brownian particle. Phys Rev Lett 68, 3375–3378 (1992). doi: 10.1103/PhysRevLett.68.3375

    CrossRef Google Scholar

    [24] Bui AAM, Stilgoe AB, Lenton ICD, Gibson LJ, Kashchuk AV et al. Theory and practice of simulation of optical tweezers. J Quant Spectrosc Radiat Transf 195, 66–75 (2017). doi: 10.1016/j.jqsrt.2016.12.026

    CrossRef Google Scholar

    [25] Sanderse B, Koren B. Accuracy analysis of explicit Runge–Kutta methods applied to the incompressible Navier–Stokes equations. J Comput Phys 231, 3041–3063 (2012). doi: 10.1016/j.jcp.2011.11.028

    CrossRef Google Scholar

    [26] Zingg DW, Chisholm TT. Runge–Kutta methods for linear ordinary differential equations. Appl Numer Math 31, 227–238 (1999). doi: 10.1016/S0168-9274(98)00129-9

    CrossRef Google Scholar

    [27] Ramos H, Vigo-Aguiar J. A fourth-order Runge–Kutta method based on BDF-type Chebyshev approximations. J Comput Appl Math 204, 124–136 (2007). doi: 10.1016/j.cam.2006.04.033

    CrossRef Google Scholar

    [28] Simmons RM, Finer JT, Chu S, Spudich JA. Quantitative measurements of force and displacement using an optical trap. Biophys J 70, 1813–1822 (1996). doi: 10.1016/S0006-3495(96)79746-1

    CrossRef Google Scholar

  • Video S1: 1Rx.avi
    Video S2: 2Rz.avi
    Video S3: 3Vx.avi
    Video S4: 4Vz.avi
    Video S5: 5RxVz.avi
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint