Liao MH, Zheng SS, Pan SX, Lu DJ, He WQ et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv 4, 200016 (2021). doi: 10.29026/oea.2021.200016
Citation: Liao MH, Zheng SS, Pan SX, Lu DJ, He WQ et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv 4, 200016 (2021). doi: 10.29026/oea.2021.200016

Original Article Open Access

Deep-learning-based ciphertext-only attack on optical double random phase encryption

More Information
  • Optical cryptanalysis is essential to the further investigation of more secure optical cryptosystems. Learning-based attack of optical encryption eliminates the need for the retrieval of random phase keys of optical encryption systems but it is limited for practical applications since it requires a large set of plaintext-ciphertext pairs for the cryptosystem to be attacked. Here, we propose a two-step deep learning strategy for ciphertext-only attack (COA) on the classical double random phase encryption (DRPE). Specifically, we construct a virtual DRPE system to gather the training data. Besides, we divide the inverse problem in COA into two more specific inverse problems and employ two deep neural networks (DNNs) to respectively learn the removal of speckle noise in the autocorrelation domain and the de-correlation operation to retrieve the plaintext image. With these two trained DNNs at hand, we show that the plaintext can be predicted in real-time from an unknown ciphertext alone. The proposed learning-based COA method dispenses with not only the retrieval of random phase keys but also the invasive data acquisition of plaintext-ciphertext pairs in the DPRE system. Numerical simulations and optical experiments demonstrate the feasibility and effectiveness of the proposed learning-based COA method.
  • 加载中
  • [1] Javidi B, Carnicer A, Yamaguchi M, Nomura T, Pérez-Cabré E et al. Roadmap on optical security. J Opt 18, 083001 (2016). doi: 10.1088/2040-8978/18/8/083001

    CrossRef Google Scholar

    [2] Carnicer A, Javidi B. Optical security and authentication using nanoscale and thin-film structures. Adv Opt Photonics 9, 218 (2017). doi: 10.1364/AOP.9.000218

    CrossRef Google Scholar

    [3] Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 20, 767–769 (1995). doi: 10.1364/OL.20.000767

    CrossRef Google Scholar

    [4] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett 25, 887–889 (2000). doi: 10.1364/OL.25.000887

    CrossRef Google Scholar

    [5] Zhu BH, Liu ST, Ran QW. Optical image encryption based on multifractional Fourier transforms. Opt Lett 25, 1159–1161 (2000). doi: 10.1364/OL.25.001159

    CrossRef Google Scholar

    [6] Situ GH, Zhang JJ. Double random-phase encoding in the Fresnel domain. Opt Lett 29, 1584–1586 (2004). doi: 10.1364/OL.29.001584

    CrossRef Google Scholar

    [7] Mehra I, Nishchal NK. Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Opt Express 22, 5474–5482 (2014). doi: 10.1364/OE.22.005474

    CrossRef Google Scholar

    [8] Javidi B, Nomura T. Securing information by use of digital holography. Opt Lett 25, 28–30 (2000). doi: 10.1364/OL.25.000028

    CrossRef Google Scholar

    [9] Kong DZ, Cao LC, Shen XJ, Zhang H, Jin GF. Image encryption based on interleaved computer-generated holograms. IEEE Trans Ind Inform 14, 673–678 (2018). doi: 10.1109/TII.2017.2714261

    CrossRef Google Scholar

    [10] Nomura T, Javidi B. Optical encryption using a joint transform correlator architecture. Opt Eng 39, 2031–2035 (2000). doi: 10.1117/1.1304844

    CrossRef Google Scholar

    [11] Zhang Y, Wang B. Optical image encryption based on interference. Opt Lett 33, 2443–2445 (2008). doi: 10.1364/OL.33.002443

    CrossRef Google Scholar

    [12] Chen W, Chen XD, Sheppard CJR. Optical image encryption based on diffractive imaging. Opt Lett 35, 3817–3819 (2010). doi: 10.1364/OL.35.003817

    CrossRef Google Scholar

    [13] Clemente P, Durán V, Torres-Company V, Tajahuerce E, Lancis J. Optical encryption based on computational ghost imaging. Opt Lett 35, 2391–2393 (2010). doi: 10.1364/OL.35.002391

    CrossRef Google Scholar

    [14] Shi YS, Li T, Wang YL, Gao QK, Zhang SG et al. Optical image encryption via ptychography. Opt Lett 38, 1425–1427 (2013). doi: 10.1364/OL.38.001425

    CrossRef Google Scholar

    [15] Schneier B. Applied Cryptography: Protocols, Algorithms, and Source Code in C 2nd ed (Wiley, New York, 1996).

    Google Scholar

    [16] Cheng XC, Cai LZ, Wang YR, Meng XF, Zhang H et al. Security enhancement of double-random phase encryption by amplitude modulation. Opt Lett 33, 1575–1577 (2008). doi: 10.1364/OL.33.001575

    CrossRef Google Scholar

    [17] Liao MH, He WQ, Lu DJ, Wu JC, Peng X. Security enhancement of the phase-shifting interferometry-based cryptosystem by independent random phase modulation in each exposure. Opt Lasers Eng 89, 34–39 (2017). doi: 10.1016/j.optlaseng.2016.03.015

    CrossRef Google Scholar

    [18] Sahoo SK, Tang DL, Dang C. Enhancing security of incoherent optical cryptosystem by a simple position-multiplexing technique and ultra-broadband illumination. Sci Rep 7, 17895 (2017). doi: 10.1038/s41598-017-17916-8

    CrossRef Google Scholar

    [19] Peng X, Wei HZ, Zhang P. Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt Lett 31, 3261–3263 (2006). doi: 10.1364/OL.31.003261

    CrossRef Google Scholar

    [20] Liao MH, Lu DJ, He WQ, Peng X. Optical cryptanalysis method using wavefront shaping. IEEE Photonics J 9, 2200513 (2017).

    Google Scholar

    [21] Peng X, Zhang P, Wei HZ, Yu B. Known-plaintext attack on optical encryption based on double random phase keys. Opt Lett 31, 1044–1046 (2006). doi: 10.1364/OL.31.001044

    CrossRef Google Scholar

    [22] Gopinathan U, Monaghan DS, Naughton TJ, Sheridan JT. A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt Express 14, 3181–3186 (2006). doi: 10.1364/OE.14.003181

    CrossRef Google Scholar

    [23] Peng X, Tang HQ, Tian JD. Ciphertext-only attack on double random phase encoding optical encryption system. Acta Phys Sin 56, 2629–2636 (2007).

    Google Scholar

    [24] Zhang CG, Liao MH, He WQ, Peng X. Ciphertext-only attack on a joint transform correlator encryption system. Opt Express 21, 28523–28530 (2013). doi: 10.1364/OE.21.028523

    CrossRef Google Scholar

    [25] Liu XL, Wu JC, He WQ, Liao MH, Zhang CG et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding. Opt Express 23, 18955–18968 (2015). doi: 10.1364/OE.23.018955

    CrossRef Google Scholar

    [26] Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 3, 27–29 (1978). doi: 10.1364/OL.3.000027

    CrossRef Google Scholar

    [27] Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 21, 2758–2769 (1982). doi: 10.1364/AO.21.002758

    CrossRef Google Scholar

    [28] Hayes M, Lim J, Oppenheim A. Signal reconstruction from phase or magnitude. IEEE Trans Acoust Speech Signal Process 28, 672–680 (1980). doi: 10.1109/TASSP.1980.1163463

    CrossRef Google Scholar

    [29] Michael G, Porat M. On signal reconstruction from Fourier magnitude. In Proceedings of the 8th IEEE International Conference on Electronics, Circuits and Systems 1403–1406 (IEEE, 2001). https://doi.org/10.1109/ICECS.2001.957477.

    Google Scholar

    [30] Sarang R, Motlagh MRJ, Eslami P. Reconstruction of image using just magnitude information of Fourier transform; is phase information really more important? In Proceedings of 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce 56–56 (IEEE, 2006). http://doi.org/10.1109/CIMCA.2006.172.

    Google Scholar

    [31] Isernia T, Pascazio V, Pierri R, Schirinzi G. Image reconstruction from Fourier transform magnitude with applications to synthetic aperture radar imaging. J Opt Soc Am A 13, 922–934 (1996). doi: 10.1364/JOSAA.13.000922

    CrossRef Google Scholar

    [32] Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar

    [33] Griffin D W, Lim J S. Signal estimation from modified short-time Fourier transform. IEEE Trans Acoust Speech Signal Process 32, 236–243 (1984). doi: 10.1109/TASSP.1984.1164317

    CrossRef Google Scholar

    [34] Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao JW et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process Mag 32, 87–109 (2015). doi: 10.1109/MSP.2014.2352673

    CrossRef Google Scholar

    [35] Liao MH, He WQ, Lu DJ, Peng X. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium. Sci Rep 7, 41789 (2017). doi: 10.1038/srep41789

    CrossRef Google Scholar

    [36] Liao MH, Lu DJ, He WQ, Peng X. Speckle-correlation-based ciphertext-only attack on the double random phase encoding scheme. Proc SPIE 10250, 102502i (2017).

    Google Scholar

    [37] Li GW, Yang WQ, Li DY, Situ GH. Cyphertext-only attack on the double random-phase encryption: experimental demonstration. Opt Express 25, 8690–8697 (2017). doi: 10.1364/OE.25.008690

    CrossRef Google Scholar

    [38] Barbastathis G, Ozcan A, Situ GH. On the use of deep learning for computational imaging. Optica 6, 921–943 (2019). doi: 10.1364/OPTICA.6.000921

    CrossRef Google Scholar

    [39] Chen LW, Yin YM, Li Y, Hong MH. Multifunctional inverse sensing by spatial distribution characterization of scattering photons. Opto-Electron Adv 2, 190019 (2019). doi: 10.29026/oea.2019.190019

    CrossRef Google Scholar

    [40] Saetchnikov AV, Tcherniavskaia EA, Saetchnikov VA, Ostendorf A. Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electron Adv 3, 200048 (2020). doi: 10.29026/oea.2020.200048

    CrossRef Google Scholar

    [41] Kamilov US, Papadopoulos IN, Shoreh MH, Goy A, Vonesch C et al. Learning approach to optical tomography. Optica 2, 517–522 (2015). doi: 10.1364/OPTICA.2.000517

    CrossRef Google Scholar

    [42] Lyu M, Wang W, Wang H, Wang HC, Li GW et al. Deep-learning-based ghost imaging. Sci Rep 7, 17865 (2017). doi: 10.1038/s41598-017-18171-7

    CrossRef Google Scholar

    [43] Wang F, Wang H, Wang HC, Li GW, Situ GH. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt Express 27, 25560–25572 (2019). doi: 10.1364/OE.27.025560

    CrossRef Google Scholar

    [44] Zuo HR, Xu ZY, Zhang JL, Jia G. Visual tracking based on transfer learning of deep salience information. Opto-Electron Adv 3, 190018 (2020). doi: 10.29026/oea.2020.190018

    CrossRef Google Scholar

    [45] Rivenson Y, Zhang YB, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl 7, 17141 (2018). doi: 10.1038/lsa.2017.141

    CrossRef Google Scholar

    [46] Wang H, Lyu M, Situ GH. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt Express 26, 22603–22614 (2018). doi: 10.1364/OE.26.022603

    CrossRef Google Scholar

    [47] Sinha A, Lee J, Li S, Barbastathis G. Lensless computational imaging through deep learning. Optica 4, 1117–1125 (2017). doi: 10.1364/OPTICA.4.001117

    CrossRef Google Scholar

    [48] Cherukara MJ, Nashed YSG, Harder RJ. Real-time coherent diffraction inversion using deep generative networks. Sci Rep 8, 16520 (2018). doi: 10.1038/s41598-018-34525-1

    CrossRef Google Scholar

    [49] Wang F, Bian YM, Wang HC, Lyu M, Pedrini G et al. Phase imaging with an untrained neural network. Light Sci Appl 9, 77 (2020). doi: 10.1038/s41377-020-0302-3

    CrossRef Google Scholar

    [50] Li S, Deng M, Lee J, Sinha A, Barbastathis G. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803–813 (2018). doi: 10.1364/OPTICA.5.000803

    CrossRef Google Scholar

    [51] Li YZ, Xue YJ, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5, 1181–1190 (2018). doi: 10.1364/OPTICA.5.001181

    CrossRef Google Scholar

    [52] Metzler CA, Heide F, Rangarajan P, Balaji MM, Viswanath A et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica 7, 63–71 (2020). doi: 10.1364/OPTICA.374026

    CrossRef Google Scholar

    [53] Lyu M, Wang H, Li GW, Zheng SS, Situ GH. Learning-based lensless imaging through optically thick scattering media. Adv Photonics 1, 036002 (2019).

    Google Scholar

    [54] Hai H, Pan SX, Liao MH, Lu DJ, He WQ et al. Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep learning. Opt Express 27, 21204–21213 (2019). doi: 10.1364/OE.27.021204

    CrossRef Google Scholar

    [55] Zhou LN, Xiao Y, Chen W. Machine-learning attacks on interference-based optical encryption: experimental demonstration. Opt Express 27, 26143–26154 (2019). doi: 10.1364/OE.27.026143

    CrossRef Google Scholar

    [56] Zhou LN, Xiao Y, Chen W. Vulnerability to machine learning attacks of optical encryption based on diffractive imaging. Opt Lasers Eng 125, 105858 (2020). doi: 10.1016/j.optlaseng.2019.105858

    CrossRef Google Scholar

    [57] Qin Y, Wan YH, Gong Q. Learning-based chosen-plaintext attack on diffractive-imaging-based encryption scheme. Opt Lasers Eng 127, 105979 (2020). doi: 10.1016/j.optlaseng.2019.105979

    CrossRef Google Scholar

    [58] Zhou LN, Xiao Y, Chen W. Learning-based attacks for detecting the vulnerability of computer-generated hologram based optical encryption. Opt Express 28, 2499–2510 (2020). doi: 10.1364/OE.380004

    CrossRef Google Scholar

    [59] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention 234–241 (Springer, 2015). http://doi.org/10.1007/978-3-319-24574-4_28.

    Google Scholar

    [60] Zhang K, Zuo WM, Chen YJ, Meng DY, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26, 3142–3155 (2017). doi: 10.1109/TIP.2017.2662206

    CrossRef Google Scholar

    [61] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 86, 2278–2324 (1998). doi: 10.1109/5.726791

    CrossRef Google Scholar

    [62] Garris MD, Blue JL, Gerald TC, Grother PJ, Wilson CL. NIST Form-Based Handprint Recognition System (US Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1997).

    Google Scholar

    [63] Ha D, Eck D. A neural representation of sketch drawings. arXiv: 1704.03477 (2017).

    Google Scholar

  • Supplementary information for Deep-learning-based ciphertext-only attack on optical double random phase encryption
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint