Citation: | Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021).. doi: 10.29026/oea.2021.200019 |
[1] | Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26, 1584–1589 (2014). doi: 10.1002/adma.201305172 |
[2] | Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi: 10.1126/science.1243982 |
[3] | Xiao ZG, Dong QF, Bi C, Shao YC, Yuan YB et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26, 6503–6509 (2014). doi: 10.1002/adma.201401685 |
[4] | Peng SM, Wang SS, Zhao DD, Li XJ, Liang C et al. Pure bromide-based perovskite nanoplatelets for blue light-emitting diodes. Small Methods 3, 1900196 (2019). doi: 10.1002/smtd.201900196 |
[5] | Luo DY, Su R, Zhang W, Gong QH, Zhu R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater 5, 44–60 (2020). doi: 10.1038/s41578-019-0151-y |
[6] | Tian W, Zhou HP, Li L. Hybrid organic-inorganic perovskite photodetectors. Small 13, 1702107 (2017). doi: 10.1002/smll.201702107 |
[7] | Veldhuis SA, Boix PP, Yantara N, Li MJ, Sum TC et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater 28, 6804–6834 (2016). doi: 10.1002/adma.201600669 |
[8] | Sahli F, Werner J, Kamino BA, Bräuninger M, Monnard R et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater 17, 820–826 (2018). doi: 10.1038/s41563-018-0115-4 |
[9] | Kong CY, Lin CH, Lin CH, Li TY, Chen SWH et al. Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv Sci 6, 1970143 (2019). doi: 10.1002/advs.201970143 |
[10] | Li ZT, Song CJ, Li JS, Liang GW, Rao LS et al. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes. Adv Mater Technol 5, 1900941 (2020). doi: 10.1002/admt.201900941 |
[11] | Chen P, Xiong ZY, Wu XY, Shao M, Meng Y et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic au nanoparticles. J Phys Chem Lett 8, 3961–3969 (2017). doi: 10.1021/acs.jpclett.7b01562 |
[12] | Li ZT, Cao K, Li JS, Du XW, Tang Y et al. Modification of interface between PEDOT:PSS and perovskite film inserting an ultrathin LiF layer for enhancing efficiency of perovskite light-emitting diodes. Org Electron 81, 105675 (2020). doi: 10.1016/j.orgel.2020.105675 |
[13] | Lu M, Zhang Y, Wang SX, Guo J, Yu WW et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater 29, 1902008 (2019). doi: 10.1002/adfm.201902008 |
[14] | Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9, 687–692 (2014). doi: 10.1038/nnano.2014.149 |
[15] | Li GR, Tan ZK, Di DW, Lai ML, Jiang L et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett 15, 2640–2644 (2015). doi: 10.1021/acs.nanolett.5b00235 |
[16] | Li JQ, Bade SGR, Shan X, Yu ZB. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater 27, 5196–5202 (2015). doi: 10.1002/adma.201502490 |
[17] | Yuan MJ, Quan LN, Comin R, Walters G, Sabatini R et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol 11, 872–877 (2016). doi: 10.1038/nnano.2016.110 |
[18] | Zhang CX, Kuang DB, Wu WQ. A review of diverse halide perovskite morphologies for efficient optoelectronic applications. Small Methods 4, 1900662 (2020). doi: 10.1002/smtd.201900662 |
[19] | Wang JP, Wang NN, Jin YZ, Si JJ, Tan ZK et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater 27, 2311–2316 (2015). doi: 10.1002/adma.201405217 |
[20] | Shi YF, Wu W, Dong H, Li GR, Xi K et al. A strategy for architecture design of crystalline perovskite light-emitting diodes with high performance. Adv Mater 30, e1800251 (2018). doi: 10.1002/adma.201800251 |
[21] | Cho H, Jeong SH, Park MH, Kim YH, Wolf C et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). doi: 10.1126/science.aad1818 |
[22] | Lin KB, Xing J, Quan LN, de Arquer FPG, Gong XW et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). doi: 10.1038/s41586-018-0575-3 |
[23] | Cao Y, Wang NN, Tian H, Guo JS, Wei YQ et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). doi: 10.1038/s41586-018-0576-2 |
[24] | Xu WD, Hu Q, Bai S, Bao CX, Miao YF et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics 13, 418–424 (2019). |
[25] | Li ZT, Song CJ, Qiu ZY, Li JS, Cao K et al. Study on the thermal and optical performance of quantum dot white light-emitting diodes using metal-based inverted packaging structure. IEEE Trans Electron Devices 66, 3020–3027 (2019). doi: 10.1109/TED.2019.2917010 |
[26] | Li CHA, Zhou ZC, Vashishtha P, Halpert JE. The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem Mater 31, 6003–6032 (2019). doi: 10.1021/acs.chemmater.9b01650 |
[27] | Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quantum Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263 |
[28] | Liu ZJ, Lin CH, Hyun BR, Sher CW, Lv ZJ et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 9, 83 (2020). doi: 10.1038/s41377-020-0268-1 |
[29] | Li JS, Tang Y, Li ZT, Ding XR, Yu BH et al. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of sba-15 mesoporous particles. ACS Appl Mater Interfaces 11, 18808–18816 (2019). doi: 10.1021/acsami.8b22298 |
[30] | Chen SWH, Huang YM, Singh KJ, Hsu YC, Liou FJ et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958 |
[31] | Li ZT, Cao K, Li JS, Tang Y, Xu L et al. Investigation of light-extraction mechanisms of multiscale patterned arrays with rough morphology for gan-based thin-film LEDs. IEEE Access 7, 73890–73898 (2019). doi: 10.1109/ACCESS.2019.2921058 |
[32] | Fang T, Zhang FJ, Yuan SC, Zeng HB, Song JZ. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. InfoMat 1, 211–233 (2019). doi: 10.1002/inf2.12019 |
[33] | Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779 |
[34] | Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7, 1377–1381 (2014). doi: 10.1039/c4ee00168k |
[35] | Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan KL et al. Band gap tuning of CH3NH3Pb(Br1-xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces 7, 13119–13124 (2015). doi: 10.1021/acsami.5b02159 |
[36] | Sadhanala A, Ahmad S, Zhao BD, Giesbrecht N, Pearce PM et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett 15, 6095–6101 (2015). doi: 10.1021/acs.nanolett.5b02369 |
[37] | Wang ZB, Cheng T, Wang FZ, Dai SY, Tan ZA. Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures. Small 12, 4412–4420 (2016). doi: 10.1002/smll.201601785 |
[38] | Kim HP, Kim J, Kim BS, Kim HM, Kim J et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater 5, 1600920 (2017). doi: 10.1002/adom.201600920 |
[39] | Wang HL, Zhao XF, Zhang BH, Xie ZY. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J Mater Chem C 7, 5596–5603 (2019). doi: 10.1039/C9TC01205B |
[40] | Yuan F, Ran CX, Zhang L, Dong H, Jiao B et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett 5, 1062–1069 (2020). doi: 10.1021/acsenergylett.9b02562 |
[41] | Gangishetty MK, Sanders SN, Congreve DN. Mn2+ doping enhances the brightness, efficiency, and stability of bulk perovskite light-emitting diodes. ACS Photonics 6, 1111–1117 (2019). doi: 10.1021/acsphotonics.9b00142 |
[42] | Du PP, Li JH, Wang L, Liu J, Li SR et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl Mater Interfaces 11, 47083–47090 (2019). doi: 10.1021/acsami.9b17164 |
[43] | Song JZ, Li JH, Li XM, Xu LM, Dong YH et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27, 7162–7167 (2015). doi: 10.1002/adma.201502567 |
[44] | Pan J, Quan LN, Zhao YB, Peng W, Murali B et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater 28, 8718–8725 (2016). doi: 10.1002/adma.201600784 |
[45] | Yang F, Chen HT, Zhang R, Liu XK, Zhang WZ et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater 30, 1908760 (2020). doi: 10.1002/adfm.201908760 |
[46] | Yao JS, Wang L, Wang KH, Yin YC, Yang JN et al. Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Sci Bull 65, 1150–1153 (2020). doi: 10.1016/j.scib.2020.03.036 |
[47] | Dong YT, Wang YK, Yuan FL, Johnston A, Liu Y et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol 15, 668–674 (2020). doi: 10.1038/s41565-020-0714-5 |
[48] | Li GR, Rivarola FWR, Davis NJLK, Bai S, Jellicoe TC et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater 28, 3528–3534 (2016). doi: 10.1002/adma.201600064 |
[49] | Ochsenbein ST, Krieg F, Shynkarenko Y, Raino G, Kovalenko MV. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces 11, 21655–21660 (2019). doi: 10.1021/acsami.9b02472 |
[50] | Deng W, Xu XZ, Zhang XJ, Zhang YD, Jin XC et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater 26, 4797–4802 (2016). doi: 10.1002/adfm.201601054 |
[51] | Yao EP, Yang ZL, Meng L, Sun PY, Dong SQ et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv Mater 29, 1606859 (2017). doi: 10.1002/adma.201606859 |
[52] | Li XM, Zhang K, Li JH, Chen J, Wu Y et al. Heterogeneous nucleation toward polar-solvent-free, fast, and one-pot synthesis of highly uniform perovskite quantum dots for wider color gamut display. Adv Mater Interfaces 5, 1800010 (2018). doi: 10.1002/admi.201800010 |
[53] | Shin YS, Yoon YJ, Lee KT, Jeong J, Park SY et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl Mater Interfaces 11, 23401–23409 (2019). doi: 10.1021/acsami.9b04329 |
[54] | Shynkarenko Y, Bodnarchuk MI, Bernasconi C, Berezovska Y, Verteletskyi V et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes. ACS Energy Lett 4, 2703–2711 (2019). doi: 10.1021/acsenergylett.9b01915 |
[55] | Ye FH, Zhang HJ, Wang P, Cai JL, Wang L et al. Spectral tuning of efficient CsPbBrxCl3-x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates. Chem Mater 32, 3211–3218 (2020). doi: 10.1021/acs.chemmater.0c00312 |
[56] | Todorovic P, Ma DX, Chen B, Quintero-Bermudez R, Saidaminov MI et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater 7, 1901440 (2019). doi: 10.1002/adom.201901440 |
[57] | Liu M, Zhong GH, Yin YM, Miao JS, Li K et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci 4, 1700335 (2017). doi: 10.1002/advs.201700335 |
[58] | Yong ZJ, Guo SQ, Ma JP, Zhang JY, Li ZY et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc 140, 9942–9951 (2018). doi: 10.1021/jacs.8b04763 |
[59] | Ahmed GH, El-Demellawi JK, Yin J, Pan J, Velusamy DB et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett 3, 2301–2307 (2018). doi: 10.1021/acsenergylett.8b01441 |
[60] | Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett 4, 32–39 (2019). doi: 10.1021/acsenergylett.8b01909 |
[61] | Zhai Y, Bai X, Pan GC, Zhu JY, Shao H et al. Effective blue-violet photoluminescence through lanthanum and fluorine ions Co-doping for CsPbCl3 perovskite quantum dots. Nanoscale 11, 2484–2491 (2019). doi: 10.1039/C8NR09794A |
[62] | Chen JK, Ma JP, Guo SQ, Chen YM, Zhao Q et al. High-efficiency violet-emitting all-inorganic perovskite nanocrystals enabled by alkaline-earth metal passivation. Chem Mater 31, 3974–3983 (2019). doi: 10.1021/acs.chemmater.9b00442 |
[63] | Meng FY, Liu XY, Cai XY, Gong ZF, Li BB et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FaBr-modified multi-cation hot-injection method. Nanoscale 11, 1295–1303 (2019). doi: 10.1039/C8NR07907B |
[64] | Hou SC, Gangishetty MK, Quan QM, Congreve DN. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018). doi: 10.1016/j.joule.2018.08.005 |
[65] | Pan GC, Bai X, Xu W, Chen X, Zhai Y et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces 12, 14195–14202 (2020). doi: 10.1021/acsami.0c01074 |
[66] | Shi SS, Wang Y, Zeng SY, Cui Y, Xiao Y. Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted plqy. Adv Opt Mater 8, 2000167 (2020). doi: 10.1002/adom.202000167 |
[67] | Shao H, Zhai Y, Wu XF, Xu W, Xu L et al. High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite qds with phenethylammonium chloride passivation. Nanoscale 12, 11728–11734 (2020). doi: 10.1039/D0NR02597F |
[68] | Zheng XP, Yuan S, Liu JK, Yin J, Yuan FL et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett 5, 793–798 (2020). doi: 10.1021/acsenergylett.0c00057 |
[69] | Chiba T, Ishikawa S, Sato J, Takahashi Y, Ebe H et al. Blue perovskite nanocrystal light-emitting devices via the ligand exchange with adamantane diamine. Adv Opt Mater 8, 2000289 (2020). doi: 10.1002/adom.202000289 |
[70] | Wang LT, Shi ZF, Ma ZZ, Yang DW, Zhang F et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett 20, 3568–3576 (2020). doi: 10.1021/acs.nanolett.0c00513 |
[71] | Levchuk I, Osvet A, Tang XF, Brandl M, Perea JD et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett 17, 2765–2770 (2017). doi: 10.1021/acs.nanolett.6b04781 |
[72] | Bekenstein Y, Koscher BA, Eaton SW, Yang PD, Alivisatos AP. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J Am Chem Soc 137, 16008–16011 (2015). doi: 10.1021/jacs.5b11199 |
[73] | Akkerman QA, Motti SG, Kandada ARS, Mosconi E, D’Innocenzo V et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc 138, 1010–1016 (2016). doi: 10.1021/jacs.5b12124 |
[74] | Kumar S, Jagielski J, Yakunin S, Rice P, Chiu YC et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016). doi: 10.1021/acsnano.6b05775 |
[75] | Zhang CY, Wan Q, Wang B, Zheng WL, Liu MM et al. Surface ligand engineering toward brightly luminescent and stable cesium lead halide perovskite nanoplatelets for efficient blue-light-emitting diodes. J Phys Chem C 123, 26161–26169 (2019). doi: 10.1021/acs.jpcc.9b09034 |
[76] | Bohn BJ, Tong Y, Gramlich M, Lai ML, Döblinger M et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett 18, 5231–5238 (2018). doi: 10.1021/acs.nanolett.8b02190 |
[77] | Yang D, Zou YT, Li PL, Liu QP, Wu LZ et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy 47, 235–242 (2018). doi: 10.1016/j.nanoen.2018.03.019 |
[78] | Wu Y, Wei CT, Li XM, Li YL, Qiu SC et al. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett 3, 2030–2037 (2018). doi: 10.1021/acsenergylett.8b01025 |
[79] | Peng SM, Wen ZL, Ye TK, Xiao XT, Wang KY et al. Effective surface ligand-concentration tuning of deep-blue luminescent FAPbBr3 nanoplatelets with enhanced stability and charge transport. ACS Appl Mater Interfaces 12, 31863–31874 (2020). doi: 10.1021/acsami.0c08552 |
[80] | Hu HW, Salim T, Chen BB, Lam YM. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep 6, 33546 (2016). doi: 10.1038/srep33546 |
[81] | Congreve DN, Weidman MC, Seitz M, Paritmongkol W, Dahod NS et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics 4, 476–481 (2017). doi: 10.1021/acsphotonics.6b00963 |
[82] | Cheng L, Cao Y, Ge R, Wei YQ, Wang NN et al. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chin Chem Lett 28, 29–31 (2017). doi: 10.1016/j.cclet.2016.07.001 |
[83] | Chen ZM, Zhang CY, Jiang XF, Liu MY, Xia RX et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv Mater 29, 1603157 (2017). doi: 10.1002/adma.201603157 |
[84] | Wang Q, Ren J, Peng XF, Ji XX, Yang XH. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces 9, 29901–29906 (2017). doi: 10.1021/acsami.7b07458 |
[85] | Vashishtha P, Ng M, Shivarudraiah SB, Halpert JE. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater 31, 83–89 (2019). doi: 10.1021/acs.chemmater.8b02999 |
[86] | Wang KH, Peng YD, Ge J, Jiang SL, Zhu BS et al. Efficient and color-tunable quasi-2D CsPbBrxC3-x perovskite blue light-emitting diodes. ACS Photonics 6, 667–676 (2019). doi: 10.1021/acsphotonics.8b01490 |
[87] | Li ZC, Chen ZM, Yang YC, Xue QF, Yip HL et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun 10, 1027 (2019). doi: 10.1038/s41467-019-09011-5 |
[88] | Zhang FJ, Cai B, Song JZ, Han BN, Zhang BS et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv Funct Mater 30, 2001732 (2020). doi: 10.1002/adfm.202001732 |
[89] | Jiang YZ, Qin CC, Cui MH, He TW, Liu KK et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun 10, 1868 (2019). doi: 10.1038/s41467-019-09794-7 |
[90] | Liu Y, Cui JY, Du K, Tian H, He ZF et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics 13, 760–764 (2019). doi: 10.1038/s41566-019-0505-4 |
[91] | Xing J, Zhao YB, Askerka M, Quan LN, Gong XW et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun 9, 3541 (2018). doi: 10.1038/s41467-018-05909-8 |
[92] | Yuan S, Wang ZK, Xiao LX, Zhang CF, Yang SY et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater 31, 1904319 (2019). doi: 10.1002/adma.201904319 |
[93] | He LH, Xiao ZW, Yang XL, Wu YT, Lian YJ et al. Green and sky blue perovskite light-emitting devices with a diamine additive. J Mater Sci 55, 7691–7701 (2020). doi: 10.1007/s10853-020-04553-2 |
[94] | Liang D, Peng YL, Fu YP, Shearer MJ, Zhang JJ et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016). doi: 10.1021/acsnano.6b02683 |
[95] | Deng W, Jin XC, Lv Y, Zhang XJ, Zhang XH et al. 2D Ruddlesden-popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater 29, 1903861 (2019). doi: 10.1002/adfm.201903861 |
[96] | Chen H, Lin J, Kang J, Kong Q, Lu D et al. Structural and spectral dynamics of single-crystalline ruddlesden-popper phase halide perovskite blue light-emitting diodes. Sci Adv 6, eaay4045 (2020). doi: 10.1126/sciadv.aay4045 |
[97] | Tan ZF, Luo JJ, Yang LB, Li X, Deng ZY et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater 8, 1901094 (2020). doi: 10.1002/adom.201901094 |
[98] | Wang Q, Wang XM, Yang Z, Zhou NH, Deng YH et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun 10, 5633 (2019). doi: 10.1038/s41467-019-13580-w |
[99] | Ma DX, Todorović P, Meshkat S, Saidaminov MI, Wang YK et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J Am Chem Soc 142, 5126–5134 (2020). doi: 10.1021/jacs.9b12323 |
[100] | Wang FZ, Wang ZY, Sun WD, Wang ZB, Bai YM et al. High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 16, e2002940 (2020). doi: 10.1002/smll.202002940 |
[101] | Leung TL, Tam HW, Liu FZ, Lin JY, Ng AMC et al. Mixed spacer cation stabilization of blue-emitting n=2 ruddlesden-popper organic-inorganic halide perovskite films. Adv Opt Mater 8, 1901679 (2020). doi: 10.1002/adom.201901679 |
[102] | Zeng SY, Shi SS, Wang SR, Xiao Y. Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. J Mater Chem C 8, 1319–1325 (2020). doi: 10.1039/C9TC05590H |
[103] | Jin Y, Wang ZK, Yuan S, Wang Q, Qin CC et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv Funct Mater 30, 1908339 (2020). doi: 10.1002/adfm.201908339 |
[104] | Zou YT, Xu H, Li SY, Song T, Kuai L et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics 6, 1728–1735 (2019). doi: 10.1021/acsphotonics.9b00435 |
[105] | Yusoff ARBM, Gavim AEX, Macedo AG, da Silva WJ, Schneider FK et al. High-efficiency, solution-processable, multilayer triple cation perovskite light-emitting diodes with copper sulfide-gallium-tin oxide hole transport layer and aluminum-zinc oxide-doped cesium electron injection layer. Mater Today Chem 10, 104–111 (2018). doi: 10.1016/j.mtchem.2018.08.005 |
[106] | Hoye RLZ, Lai ML, Anaya M, Tong Y, Galkowski K et al. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes. ACS Energy Lett 4, 1181–1188 (2019). doi: 10.1021/acsenergylett.9b00571 |
[107] | Gangishetty MK, Hou SC, Quan QM, Congreve DN. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater 30, e1706226 (2018). doi: 10.1002/adma.201706226 |
[108] | Ren ZW, Xiao XT, Ma RM, Lin H, Wang K et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater 29, 1905339 (2019). doi: 10.1002/adfm.201905339 |
[109] | Shin YS, Yoon YJ, Heo J, Song S, Kim JW et al. Functionalized PFN-X (X = Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes. ACS Appl Mater Interfaces 12, 35740–35747 (2020). doi: 10.1021/acsami.0c09968 |
[110] | Wang HL, Xu YS, Wu J, Chen L, Yang QQ et al. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering. J Phys Chem Lett 11, 1411–1418 (2020). doi: 10.1021/acs.jpclett.9b03714 |
[111] | Yuan ZC, Miao YF, Hu ZJ, Xu WD, Kuang CY et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat Commun 10, 2818 (2019). doi: 10.1038/s41467-019-10612-3 |
Preliminary study of pure 3D perovskites and their blue PeLEDs. (a) Schematic diagram of the structure of 3D perovskites. (b) Photoluminescence spectra of MAPb(Br1−xClx)3 perovskite film with different ratios of Cl-. (c) SEM image of MAPb(Br1−xClx)3 perovskite film on ITO/PEDOT:PSS substrate. (d) Normalized EL spectra of CH3NH3Pb(BrxCl1−x)3 [0 ≤ x ≤ 1] perovskite thin-film-based LEDs with different chloride−bromide ratios, as indicated and measured at 77 K. Figure reproduced with permission from: (a-c) ref.35, American Chemical Society; (d) ref.36, American Chemical Society.
Morphology and PLQY modification for 3D perovskites and their blue PeLEDs. (a) The calculated coverage degree and average grain size of perovskite films with various CsBr:RbBr molar ratios. (b) EL spectra of the device fabricated with cocktail cation strategy operating under different voltages. The inset shows a digital photograph of a device in operation. (c) PLQY measurements with various Mn doping ratios. (d) Time-resolved photoluminescence (TRPL) decays of samples A (deep-blue region), B (blue region), and C (sky-blue region). Figure reproduced with permission from: (a) ref.39, Royal Society of Chemistry; (b) ref.40, American Chemical Society; (c) ref.41, American Chemical Society; (d) ref.42, American Chemical Society.
Spectral tuning strategies for PQDs and their blue PeLEDs. (a) Schematic diagram of CsPbBrxCl3-x QD-based blue PeLED device structure by the DDAB/DDAC post-treatment strategy. (b) EL spectra of CsPbBrxCl3−x QD-based PeLEDs with various ratios of DDAB and DDAC in precursor solution. The inset shows a digital photograph of the device in operation. (c) Schematic diagram of the halogen exchange process in PQDs enhanced by benzenesulfonates. Figure reproduced with permission from: (a) ref.53, American Chemical Society; (b) ref.54, American Chemical Society; (c) ref.55, American Chemical Society.
Defects passivation strategies for PQDs and their blue PeLEDs. (a) TRPL curves of pristine, RbBr-modified, and FABr/RbBr-modified PQD films. (b) PLQY of Ni2+ ion-doped CsPbClxBr3−x PQDs in dispersion with NiCl2 precursor feeding amounts of 0, 0.01, 0.02, 0.04, and 0.08 ml. The inset shows photographs of the Ni2+ ion-doped CsPbClxBr3−x PQDs under 365 nm UV lamp illumination. (c) Illustration of Cl vacancy-induced trap site formation, electron trapping, and self-assembly of DAT on the defect sites of perovskite films. (d) EL spectra of Cs3Cu2I5 QD-based PeLEDs measured before aging, after running for 108 and 170 h, and after a relaxation time of 1 h. Figure reproduced with permission from: (a) ref.63, Royal Society of Chemistry; (b) ref.65, American Chemical Society; (c) ref.68, American Chemical Society; (d) ref.70, American Chemical Society.
Dimension tuning and surface passivation strategies for PNLs and their blue PeLEDs. (a) A digital photograph of the first colloidal PNL-based pure-blue LED in operation (area: 3 mm × 5 mm). (b) Schematic diagram of colloidal NPLs treated by DDAB. (c) EL spectra of the colloidal PNL-based PeLEDs fabricated by Bohn et al. with PbBr2 post-treatment strategy. The inset shows digital photographs of a device in operation. (d) Illustration of in-situ passivation strategy of PbBr64− octahedra. Figure reproduced with permission from: (a) ref.74, American Chemical Society; (b) ref.75, American Chemical Society; (c) ref.76, American Chemical Society; (d) ref.78, American Chemical Society.
Phases modulation strategies for quasi-2D perovskite and their PeLEDs. (a) EL spectra of BA cations-based quasi-2D PeLEDs. (b) PLQY and trap density curves of quasi-2D perovskite film with various concentration of PEABr. (c) PL spectra of Rb-Cs alloyed perovskite films with various composition. (d) Transient absorption spectra of PEA2MA1.5Pb2.5Br8.5 with various molar ratio of IPABr from 0 to 40%. Figure reproduced with permission from: (a) ref.85, American Chemical Society; (b) ref.87, Springer Nature; (c) ref.89, Springer Nature; (d) ref.91, Springer Nature.
Spectral stability modification strategies for quasi-2D perovskite and their PeLEDs. (a) Schematic diagram of the yttrium gradient distribution in the CsPbBr3:PEACl (1:1) film and its function in increasing the bandgap around the grain surface. (b) Stable EL spectra of DPPOCl-treated PeLEDs before and after operation. The inset is the schematic diagram of the mechanism of the DPPOCl induced chlorides-insertion-immobilization process. (c) EL spectra of moisture-treated blue emissive device operated under a different bias with moral ratio of CsBr: PbBr2 of 2.2. Figure reproduced with permission from: (a) ref.98, Springer Nature; (b) ref.99, American Chemical Society; (c) ref.104, American Chemical Society.
Interface modification strategies for blue PeLEDs. (a) Device structure of quasi-2D blue PeLEDs with LiF as the interface modification layer. (b) Energy level alignment diagram of blue PeLEDs with device structure of LiF-perovskite-LiF. (c) Device structure and (d) cross-section picture of quasi-2D PeLEDs with RbCl as the interface modification layer. Figure reproduced from: (a) ref.86, American Chemical Society; (b) ref.40, American Chemical Society; (c) and (d) ref.110, American Chemical Society.
Energy level alignments of various ETL, HTL, and emissive layer materials.