Wen XM, Bi YG, Yi FS, Zhang XL, Liu YF et al. Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electron Adv 4, 200024 (2021). doi: 10.29026/oea.2021.200024
Citation: Wen XM, Bi YG, Yi FS, Zhang XL, Liu YF et al. Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electron Adv 4, 200024 (2021) . doi: 10.29026/oea.2021.200024

Original Article Open Access

Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes

More Information
  • We report a feasible method to realize tunable surface plasmon-polariton (SPP) resonance in organic light-emitting devices (OLEDs) by employing corrugated Ag-Al alloy electrodes. The excited SPP resonance induced by the periodic corrugations can be precisely tuned based on the composition ratios of the Ag-Al alloy electrodes. With an appropriate composition ratio of the corrugated alloy electrode, the photons trapped in SPP modes are recovered and extracted effectively. The 25% increasement in luminance and 21% enhancement in current efficiency have been achieved by using the corrugated Ag-Al alloy electrodes in OLEDs.
  • 加载中
  • [1] Liu LH, Li SL, Wu L, Chen DF, Cao K et al. Enhanced flexibility and stability of PEDOT:PSS electrodes through interfacial crosslinking for flexible organic light-emitting diodes. Org Electron 89, 106047 (2021). doi: 10.1016/j.orgel.2020.106047

    CrossRef Google Scholar

    [2] Jeon Y, Choi HR, Kwon JH, Choi S, Nam KM et al. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci Appl 8, 114 (2019). doi: 10.1038/s41377-019-0221-3

    CrossRef Google Scholar

    [3] Yin D, Chen ZY, Jiang NR, Liu YF, Bi YG et al. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Org Electron 76, 105494 (2020). doi: 10.1016/j.orgel.2019.105494

    CrossRef Google Scholar

    [4] Ding R, Dong FX, An MH, Wang XP, Wang MR et al. High-color-rendering and high-efficiency white organic light-emitting devices based on double-doped organic single crystals. Adv Funct Mater 29, 1807606 (2019). doi: 10.1002/adfm.201807606

    CrossRef Google Scholar

    [5] Huang YG, Hsiang EL, Deng MY, Wu ST. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020). doi: 10.1038/s41377-020-0341-9

    CrossRef Google Scholar

    [6] Song MG, Kim KS, Yang HI, Kim SK, Kim JH et al. Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Org Electron 76, 105418 (2020). doi: 10.1016/j.orgel.2019.105418

    CrossRef Google Scholar

    [7] Yin D, Jiang NR, Liu YF, Zhang XL, Li AW et al. Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light Sci Appl 7, 35 (2018). doi: 10.1038/s41377-018-0041-x

    CrossRef Google Scholar

    [8] Baek K, Lee DM, Lee YJ, Choi H, Seo J et al. Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore. Light Sci Appl 8, 120 (2019). doi: 10.1038/s41377-019-0232-0

    CrossRef Google Scholar

    [9] Feng J, Liu YF, Bi YG, Sun HB. Light manipulation in organic light-emitting devices by integrating micro/nano patterns. Laser Photonics Rev 11, 1600145 (2017). doi: 10.1002/lpor.201600145

    CrossRef Google Scholar

    [10] Qu Y, Kim J, Coburn C, Forrest SR. Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays. ACS Photonics 5, 2453–2458 (2018). doi: 10.1021/acsphotonics.8b00255

    CrossRef Google Scholar

    [11] Salehi A, Fu XY, Shin DH, So F. Recent advances in OLED optical design. Adv Funct Mater 29, 1808803 (2019). doi: 10.1002/adfm.201808803

    CrossRef Google Scholar

    [12] Zhou L, Ou QD, Li YQ, Xiang HY, Xu LH et al. Efficiently releasing the trapped energy flow in white organic light-emitting diodes with multifunctional nanofunnel arrays. Adv Funct Mater 25, 2660–2668 (2015). doi: 10.1002/adfm.201500310

    CrossRef Google Scholar

    [13] Choi J, Shim YS, Park CH, Hwang H, Kwack JH et al. Junction-free electrospun ag fiber electrodes for flexible organic light-emitting diodes. Small 14, 1702567 (2018). doi: 10.1002/smll.201702567

    CrossRef Google Scholar

    [14] Putnin T, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K et al. Enhanced organic solar cell performance: Multiple surface plasmon resonance and incorporation of silver nanodisks into a grating-structure electrode. Opto-Electron Adv 2, 190010 (2019). doi: 10.29026/oea.2019.190010

    CrossRef Google Scholar

    [15] Bi YG, Liu YF, Zhang XL, Yin D, Wang WQ et al. Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices. Adv Opt Mater 7, 1800778 (2019). doi: 10.1002/adom.201800778

    CrossRef Google Scholar

    [16] Morales-Masis M, De Wolf S, Woods-Robinson R, Ager JW, Ballif C. Transparent electrodes for efficient optoelectronics. Adv Electron Mater 3, 1600529 (2017). doi: 10.1002/aelm.201600529

    CrossRef Google Scholar

    [17] Ho MD, Liu YY, Dong DS, Zhao YM, Cheng WL. Fractal gold nanoframework for highly stretchable transparent strain-insensitive conductors. Nano Lett 18, 3593–3599 (2018). doi: 10.1021/acs.nanolett.8b00694

    CrossRef Google Scholar

    [18] Yi FS, Bi YG, Zhang XL, Yin D, Liu YF et al. Highly flexible and mechanically robust ultrathin Au grid as electrodes for flexible organic light-emitting devices. IEEE Trans Nanotechnol 18, 776–780 (2019). doi: 10.1109/TNANO.2019.2928689

    CrossRef Google Scholar

    [19] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [20] Ma C, Gao XM, Bi YG, Yi FS, Zhang XL et al. Directly imprinted periodic corrugation on ultrathin metallic electrode for enhanced light extraction in organic light-emitting devices. IEEE Trans Nanotechnol 18, 1057–1062 (2019). doi: 10.1109/TNANO.2019.2936035

    CrossRef Google Scholar

    [21] Bi YG, Feng J, Liu YS, Li YF, Chen Y et al. Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. Sci Rep 4, 7108 (2014).

    Google Scholar

    [22] Xu M, Feng J, Liu YS, Jin Y, Wang HY et al. Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl Phys Lett 105, 153303 (2014). doi: 10.1063/1.4898137

    CrossRef Google Scholar

    [23] Huang CY, Zhang XP, Wang JS, Hong CY. Toward electrically pumped polymer lasing: light-emitting diodes based on microcavity arrays of distributed bragg gratings. Adv Opt Mater 6, 1800806 (2018). doi: 10.1002/adom.201800806

    CrossRef Google Scholar

    [24] Liang HW, Hsu HC, Wu JN, He XF, Wei MK et al. Corrugated organic light-emitting diodes to effectively extract internal modes. Opt Express 27, A372–A384 (2019). doi: 10.1364/OE.27.00A372

    CrossRef Google Scholar

    [25] Garcia RF, Zeng L, Khadir S, Chakaroun M, Fischer APA et al. Enhanced electroluminescence of an organic light-emitting diode by localized surface plasmon using Al periodic structure. J Opt Soc Am B 33, 246–252 (2016). doi: 10.1364/JOSAB.33.000246

    CrossRef Google Scholar

    [26] Lindquist NC, Luhman WA, Oh SH, Holmes RJ. Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl Phys Lett 93, 123308 (2008). doi: 10.1063/1.2988287

    CrossRef Google Scholar

    [27] Deng LL, Yang JQ, Zhan N, Yu TY, Yu HT et al. High-performance solution-processed white organic light-emitting diodes based on silica-coated silver nanocubes. Opt Lett 44, 983–986 (2019). doi: 10.1364/OL.44.000983

    CrossRef Google Scholar

    [28] Andrew P, Barnes WL. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004). doi: 10.1126/science.1102992

    CrossRef Google Scholar

    [29] Liu YS, Guo S, Yi FS, Feng J, Sun HB. Highly flexible organic-inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode. Opt Lett 43, 5524–5527 (2018). doi: 10.1364/OL.43.005524

    CrossRef Google Scholar

    [30] Bi YG, Feng J, Li YF, Jin Y, Liu YF et al. Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure. Appl Phys Lett 100, 053304 (2012). doi: 10.1063/1.3680595

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint