Citation: |
|
[1] | Huang HZ, Li JH, Deng J, GeY, Liu HG et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031 |
[2] | Fang YR, Ge YQ, Wang C, Zhang H. Mid‐infrared photonics using 2D materials: status and challenges. Laser Photon Rev 4, 1900098 (2020). |
[3] | Jiang T, Yin K, Wang C, You J, Ouyang H et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res 8, 78–90 (2020). doi: 10.1364/PRJ.8.000078 |
[4] | Hao QQ, Wang C, Liu WX, Liu XQ, Liu J et al. Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. Nanophotonics 9, 2603–2639 (2020). doi: 10.1515/nanoph-2019-0544 |
[5] | Tan T, Jiang XT, Wang C, Yao BC, Zhang H. 2D material optoelectronics for information functional device applications: status and challenges. Adv Sci 7, 2000058 (2020). doi: 10.1002/advs.202000058 |
[6] | Liu HH, Yu Y, Song W, Jiang Q, Pang FF. Recent development of flat supercontinuum generation in specialty optical fibers. Opto-Electron Adv 2, 180020 (2019). doi: 10.29026/oea.2019.180020 |
[7] | Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics 4, 477–483 (2010). doi: 10.1038/nphoton.2010.89 |
[8] | Volz T, Reinhard A, Winger M, Badolato A, Hennessy KJ et al. Ultrafast all-optical switching by single photons. Nat Photonics 6, 605–609 (2012). doi: 10.1038/nphoton.2012.181 |
[9] | Yang S, Liu DC, Tan ZL, Liu K, Zhu ZH et al. CMOS-compatible WS2-based all-optical modulator. ACS Photonics 5, 342–346 (2018). doi: 10.1021/acsphotonics.7b01206 |
[10] | Qiu CY, Yang YX, Li C, Wang YF, Wu K et al. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep 7, 17046 (2017). doi: 10.1038/s41598-017-16989-9 |
[11] | Ren AB, Feng M, Song F, Ren YY, Yang S et al. Actively Q-switched ytterbium-doped fiber laser by an all-optical Q-switcher based on graphene saturable absorber. Opt Express 23, 21490–21496 (2015). doi: 10.1364/OE.23.021490 |
[12] | Williams RJ, Jovanovic N, Marshall GD, Withford MJ. All-optical, actively Q-switched fiber laser. Opt Express 18, 7714–7723 (2010). doi: 10.1364/OE.18.007714 |
[13] | Yun HG, Lee SH, Lee MH, Kim KH. An actively Q-switched single-longitudinal-mode fiber laser with an optically pumped saturable absorber. Laser Phys 23, 095107 (2013). doi: 10.1088/1054-660X/23/9/095107 |
[14] | Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 14, 37–43 (2020). doi: 10.1038/s41566-019-0547-7 |
[15] | Wang H, Yang NN, Chang LM, Zhou CB, Li SY et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Res 8, 468–474 (2020). doi: 10.1364/PRJ.380170 |
[16] | Gan XT, Zhao CY, Wang YD, Mao D, Fang L et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468–471 (2015). doi: 10.1364/OPTICA.2.000468 |
[17] | Yu SL, Wu XQ, Chen KR, Chen BG, Guo X et al. All-optical graphene modulator based on optical Kerr phase shift. Optica 3, 541–544 (2016). doi: 10.1364/OPTICA.3.000541 |
[18] | Wu K, Guo CS, Wang H, Zhang XY, Wang J et al. All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt Express 25, 17639–17649 (2017). doi: 10.1364/OE.25.017639 |
[19] | Wang YZ, Zhang F, Tang X, Chen X, Chen YX et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photon Rev 12, 1800016 (2018). doi: 10.1002/lpor.201800016 |
[20] | Wang YZ, Huang WC, Zhao JL, Huang H, Wang C et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J Mater Chem C 7, 871–878 (2019). doi: 10.1039/C8TC05513K |
[21] | Cheng Z, Cao R, Guo J, Yao YH, Wei KK et al. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics 9, 1973–1979 (2020). doi: 10.1515/nanoph-2019-0510 |
[22] | Wang C, Wang YZ, Jiang XT, Xu JW, Huang WC et al. MXene Ti3C2Tx: a promising photothermal conversion material and application in all‐optical modulation and all‐optical information loading. Adv Opt Mater 7, 1900060 (2019). doi: 10.1002/adom.201900060 |
[23] | Mannix AJ, Zhang ZH, Guisinger NP, Yakobson BI, Hersam MC. Borophene as a prototype for synthetic 2D materials development. Nat Nanotechnol 13, 444–450 (2018). doi: 10.1038/s41565-018-0157-4 |
[24] | Huang YF, Shirodkar SN, Yakobson BI. Two-dimensional Boron polymorphs for visible range plasmonics: a first-principles exploration. J Am Chem Soc 139, 17181–17185 (2017). doi: 10.1021/jacs.7b10329 |
[25] | Zhou HB, Cai YQ, Zhang G, Zhang YW. Superior lattice thermal conductance of single-layer borophene. npj 2D Mater Appl 1, 14 (2017). doi: 10.1038/s41699-017-0018-2 |
[26] | Xie ZJ, Meng XY, Li XN, Liang WY, Huang WC et al. Two-dimensional borophene: properties, fabrication, and promising applications. Research 2020, 2624617 (2020). |
[27] | Vishnoi P, Pramoda K, Rao CNR. 2D elemental nanomaterials beyond graphene. ChemNanoMat 5, 1062–1091 (2019). doi: 10.1002/cnma.201900176 |
[28] | Jiang HR, Lu ZH, Wu MC, Ciucci F, Zhao TS. Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016). doi: 10.1016/j.nanoen.2016.03.013 |
[29] | Zhou BZ, Liu MJ, Wen YW, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020). doi: 10.29026/oea.2020.190043 |
[30] | Li HL, Jing L, Liu WW, Lin JJ, Tay RY et al. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 12, 1262–1272 (2018). doi: 10.1021/acsnano.7b07444 |
[31] | Ranjan P, Sahu TK, Bhushan R, Yamijala SS, Late DJ et al. Freestanding borophene and its hybrids. Adv Mater 31, 1900353 (2019). doi: 10.1002/adma.201900353 |
[32] | Feng BJ, Zhang J, Zhong Q, Li WB, Li S et al. Experimental realization of two-dimensional boron sheets. Nat Chem 8, 563–568 (2016). doi: 10.1038/nchem.2491 |
[33] | Guo QB, Wu K, Shao ZP, Basore ET, Jiang P et al. Boron nanosheets for efficient all‐optical modulation and logic operation. Adv Opt Mater 7, 1900322 (2019). |
[34] | Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007 |
[35] | Guo QB, Yao YH, Luo ZC, Qin ZP, Xie GQ et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals. ACS Nano 10, 9463–9469 (2016). doi: 10.1021/acsnano.6b04536 |
[36] | Xie ZJ, Zhang F, Liang ZM, Fan TJ, Li ZJ et al. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Res 7, 494–502 (2019). doi: 10.1364/PRJ.7.000494 |
[37] | Vega-Mayoral V, Vella D, Borzda T, Prijatelj M, Tempra I et al. Exciton and charge carrier dynamics in few-layer WS2. Nanoscale 8, 5428–5434 (2016). doi: 10.1039/C5NR08384B |
[38] | Guo J, Shi RC, Wang R, Wang YZ, Zhang F et al. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics. Laser Photon Rev 14, 1900367 (2020). doi: 10.1002/lpor.201900367 |
[39] | Wu Q, Chen S, Wang YZ, Wu LM, Jiang XT et al. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv Mater Technol 4, 1800532 (2019). doi: 10.1002/admt.201800532 |
[40] | Wang YZ, Huang WC, Wang C, Guo J, Zhang F et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photon Rev 13, 1800313 (2019). doi: 10.1002/lpor.201800313 |
[41] | Wang YD, Gan XT, Zhao CY, Fang L, Mao D et al. All-optical control of microfiber resonator by graphene's photothermal effect. Appl Phys Lett 108, 171905 (2016). doi: 10.1063/1.4947577 |
[42] | Wang YF, Wu K, Chen JP. All-optical modulator based on MoS2-PVA thin film. Chin Opt Lett 16, 020003 (2018). doi: 10.3788/COL201816.020003 |
Supplementary information for Boron quantum dots all-optical modulator based on efficient photothermal effect |
Characterization and photothermal properties of BQDs. (a) AFM image with statistical data of diameters (inset). (b) HRTEM micrographs. (c) EELS spectrum with the corresponding atomic ratio. (d) XPS spectrum of B 1s. (e) UV-Vis-NIR absorption spectrum. (f) IR thermogram of the BQDs-deposited microfiber with the incident light power of 0 mW, 50 mW and 100 mW, respectively, inset shows the optical microscopic image of BQDs-deposited microfiber. (g) Photothermal response rate at 50 mW and 100 mW. (h) Photothermal switching performance at 50 mW and 100 mW. (i) Temperature variation with light power from 0 to 100 mW with an interval of 10 mW.
(a, b) 2D mapping of TA spectra from 500 nm to 730 nm, and from 910 nm to 1070 nm. Horizontal axis, vertical axis, and color scale represent the probe wavelength, the pump-probe time delay, and the intensity of TA signal, respectively. The dynamic curves and fitted results of the BQDs at 520 nm (c) and 970 nm (d).
(a) The experimental diagram of the all-optical modulator. (b, c) Interferometric spectrum of signal light. (d) Interferometric spectra at the control light power of 0 mW and 33 mW. (e) Phase shift versus the control light power.
All-optical intensity modulation. (a, b) Waveform of control light and signal light at the modulation frequency of 300 Hz. (c) A single on–off transition of the signal light and corresponding fitting curve. (d) Waveform of signal light at the modulation frequency of 400 Hz. (e) Vpp versus modulation frequency. (f) Waveform of signal light.
(a) The experimental diagram of the all-optical actively Q-switched lasers. (b) The state of continuous wave and Q-switched pulse laser. (c) The waveform of control light and pulse train. (d) Single pulse profile in (c). (e) The pulse trains under different modulation frequency. (f) The pulse width of Q-switched laser versus the modulation frequency. (g) The output spectrum of Q-switched laser.