Wang C, Chen QY, Chen HL, Liu J, Song YF et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021). doi: 10.29026/oea.2021.200032
Citation: Wang C, Chen QY, Chen HL, Liu J, Song YF et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021) . doi: 10.29026/oea.2021.200032

Original Article Open Access

Boron quantum dots all-optical modulator based on efficient photothermal effect

More Information
  • All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication. In this work, boron quantum dots (BQDs) were synthesized by a facile liquid-phase exfoliation method. The as-prepared BQDs showed good structural homogeneity and crystallinity, broadband optical absorption as well as excellent photothermal properties. Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs. Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs, we fabricated BQDs-based all-optical modulator. The phase shift with a slope efficiency of 0.032 π/mW and response time of 0.97 ms can be achieved. The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate. This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.
  • 加载中
  • [1] Huang HZ, Li JH, Deng J, GeY, Liu HG et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). doi: 10.29026/oea.2020.190031

    CrossRef Google Scholar

    [2] Fang YR, Ge YQ, Wang C, Zhang H. Mid‐infrared photonics using 2D materials: status and challenges. Laser Photon Rev 4, 1900098 (2020).

    Google Scholar

    [3] Jiang T, Yin K, Wang C, You J, Ouyang H et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res 8, 78–90 (2020). doi: 10.1364/PRJ.8.000078

    CrossRef Google Scholar

    [4] Hao QQ, Wang C, Liu WX, Liu XQ, Liu J et al. Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. Nanophotonics 9, 2603–2639 (2020). doi: 10.1515/nanoph-2019-0544

    CrossRef Google Scholar

    [5] Tan T, Jiang XT, Wang C, Yao BC, Zhang H. 2D material optoelectronics for information functional device applications: status and challenges. Adv Sci 7, 2000058 (2020). doi: 10.1002/advs.202000058

    CrossRef Google Scholar

    [6] Liu HH, Yu Y, Song W, Jiang Q, Pang FF. Recent development of flat supercontinuum generation in specialty optical fibers. Opto-Electron Adv 2, 180020 (2019). doi: 10.29026/oea.2019.180020

    CrossRef Google Scholar

    [7] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics 4, 477–483 (2010). doi: 10.1038/nphoton.2010.89

    CrossRef Google Scholar

    [8] Volz T, Reinhard A, Winger M, Badolato A, Hennessy KJ et al. Ultrafast all-optical switching by single photons. Nat Photonics 6, 605–609 (2012). doi: 10.1038/nphoton.2012.181

    CrossRef Google Scholar

    [9] Yang S, Liu DC, Tan ZL, Liu K, Zhu ZH et al. CMOS-compatible WS2-based all-optical modulator. ACS Photonics 5, 342–346 (2018). doi: 10.1021/acsphotonics.7b01206

    CrossRef Google Scholar

    [10] Qiu CY, Yang YX, Li C, Wang YF, Wu K et al. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep 7, 17046 (2017). doi: 10.1038/s41598-017-16989-9

    CrossRef Google Scholar

    [11] Ren AB, Feng M, Song F, Ren YY, Yang S et al. Actively Q-switched ytterbium-doped fiber laser by an all-optical Q-switcher based on graphene saturable absorber. Opt Express 23, 21490–21496 (2015). doi: 10.1364/OE.23.021490

    CrossRef Google Scholar

    [12] Williams RJ, Jovanovic N, Marshall GD, Withford MJ. All-optical, actively Q-switched fiber laser. Opt Express 18, 7714–7723 (2010). doi: 10.1364/OE.18.007714

    CrossRef Google Scholar

    [13] Yun HG, Lee SH, Lee MH, Kim KH. An actively Q-switched single-longitudinal-mode fiber laser with an optically pumped saturable absorber. Laser Phys 23, 095107 (2013). doi: 10.1088/1054-660X/23/9/095107

    CrossRef Google Scholar

    [14] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 14, 37–43 (2020). doi: 10.1038/s41566-019-0547-7

    CrossRef Google Scholar

    [15] Wang H, Yang NN, Chang LM, Zhou CB, Li SY et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Res 8, 468–474 (2020). doi: 10.1364/PRJ.380170

    CrossRef Google Scholar

    [16] Gan XT, Zhao CY, Wang YD, Mao D, Fang L et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468–471 (2015). doi: 10.1364/OPTICA.2.000468

    CrossRef Google Scholar

    [17] Yu SL, Wu XQ, Chen KR, Chen BG, Guo X et al. All-optical graphene modulator based on optical Kerr phase shift. Optica 3, 541–544 (2016). doi: 10.1364/OPTICA.3.000541

    CrossRef Google Scholar

    [18] Wu K, Guo CS, Wang H, Zhang XY, Wang J et al. All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt Express 25, 17639–17649 (2017). doi: 10.1364/OE.25.017639

    CrossRef Google Scholar

    [19] Wang YZ, Zhang F, Tang X, Chen X, Chen YX et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photon Rev 12, 1800016 (2018). doi: 10.1002/lpor.201800016

    CrossRef Google Scholar

    [20] Wang YZ, Huang WC, Zhao JL, Huang H, Wang C et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J Mater Chem C 7, 871–878 (2019). doi: 10.1039/C8TC05513K

    CrossRef Google Scholar

    [21] Cheng Z, Cao R, Guo J, Yao YH, Wei KK et al. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics 9, 1973–1979 (2020). doi: 10.1515/nanoph-2019-0510

    CrossRef Google Scholar

    [22] Wang C, Wang YZ, Jiang XT, Xu JW, Huang WC et al. MXene Ti3C2Tx: a promising photothermal conversion material and application in all‐optical modulation and all‐optical information loading. Adv Opt Mater 7, 1900060 (2019). doi: 10.1002/adom.201900060

    CrossRef Google Scholar

    [23] Mannix AJ, Zhang ZH, Guisinger NP, Yakobson BI, Hersam MC. Borophene as a prototype for synthetic 2D materials development. Nat Nanotechnol 13, 444–450 (2018). doi: 10.1038/s41565-018-0157-4

    CrossRef Google Scholar

    [24] Huang YF, Shirodkar SN, Yakobson BI. Two-dimensional Boron polymorphs for visible range plasmonics: a first-principles exploration. J Am Chem Soc 139, 17181–17185 (2017). doi: 10.1021/jacs.7b10329

    CrossRef Google Scholar

    [25] Zhou HB, Cai YQ, Zhang G, Zhang YW. Superior lattice thermal conductance of single-layer borophene. npj 2D Mater Appl 1, 14 (2017). doi: 10.1038/s41699-017-0018-2

    CrossRef Google Scholar

    [26] Xie ZJ, Meng XY, Li XN, Liang WY, Huang WC et al. Two-dimensional borophene: properties, fabrication, and promising applications. Research 2020, 2624617 (2020).

    Google Scholar

    [27] Vishnoi P, Pramoda K, Rao CNR. 2D elemental nanomaterials beyond graphene. ChemNanoMat 5, 1062–1091 (2019). doi: 10.1002/cnma.201900176

    CrossRef Google Scholar

    [28] Jiang HR, Lu ZH, Wu MC, Ciucci F, Zhao TS. Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016). doi: 10.1016/j.nanoen.2016.03.013

    CrossRef Google Scholar

    [29] Zhou BZ, Liu MJ, Wen YW, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020). doi: 10.29026/oea.2020.190043

    CrossRef Google Scholar

    [30] Li HL, Jing L, Liu WW, Lin JJ, Tay RY et al. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 12, 1262–1272 (2018). doi: 10.1021/acsnano.7b07444

    CrossRef Google Scholar

    [31] Ranjan P, Sahu TK, Bhushan R, Yamijala SS, Late DJ et al. Freestanding borophene and its hybrids. Adv Mater 31, 1900353 (2019). doi: 10.1002/adma.201900353

    CrossRef Google Scholar

    [32] Feng BJ, Zhang J, Zhong Q, Li WB, Li S et al. Experimental realization of two-dimensional boron sheets. Nat Chem 8, 563–568 (2016). doi: 10.1038/nchem.2491

    CrossRef Google Scholar

    [33] Guo QB, Wu K, Shao ZP, Basore ET, Jiang P et al. Boron nanosheets for efficient all‐optical modulation and logic operation. Adv Opt Mater 7, 1900322 (2019).

    Google Scholar

    [34] Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007

    CrossRef Google Scholar

    [35] Guo QB, Yao YH, Luo ZC, Qin ZP, Xie GQ et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals. ACS Nano 10, 9463–9469 (2016). doi: 10.1021/acsnano.6b04536

    CrossRef Google Scholar

    [36] Xie ZJ, Zhang F, Liang ZM, Fan TJ, Li ZJ et al. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Res 7, 494–502 (2019). doi: 10.1364/PRJ.7.000494

    CrossRef Google Scholar

    [37] Vega-Mayoral V, Vella D, Borzda T, Prijatelj M, Tempra I et al. Exciton and charge carrier dynamics in few-layer WS2. Nanoscale 8, 5428–5434 (2016). doi: 10.1039/C5NR08384B

    CrossRef Google Scholar

    [38] Guo J, Shi RC, Wang R, Wang YZ, Zhang F et al. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics. Laser Photon Rev 14, 1900367 (2020). doi: 10.1002/lpor.201900367

    CrossRef Google Scholar

    [39] Wu Q, Chen S, Wang YZ, Wu LM, Jiang XT et al. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv Mater Technol 4, 1800532 (2019). doi: 10.1002/admt.201800532

    CrossRef Google Scholar

    [40] Wang YZ, Huang WC, Wang C, Guo J, Zhang F et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photon Rev 13, 1800313 (2019). doi: 10.1002/lpor.201800313

    CrossRef Google Scholar

    [41] Wang YD, Gan XT, Zhao CY, Fang L, Mao D et al. All-optical control of microfiber resonator by graphene's photothermal effect. Appl Phys Lett 108, 171905 (2016). doi: 10.1063/1.4947577

    CrossRef Google Scholar

    [42] Wang YF, Wu K, Chen JP. All-optical modulator based on MoS2-PVA thin film. Chin Opt Lett 16, 020003 (2018). doi: 10.3788/COL201816.020003

    CrossRef Google Scholar

  • Supplementary information for Boron quantum dots all-optical modulator based on efficient photothermal effect
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint