Zhang XZ, Yang BY, Jiang JF, Liu K, Fan XJ et al. Side-polished SMS based RI sensor employing macro-bending perfluorinated POF. Opto-Electron Adv 4, 200041 (2021). doi: 10.29026/oea.2021.200041
Citation: Zhang XZ, Yang BY, Jiang JF, Liu K, Fan XJ et al. Side-polished SMS based RI sensor employing macro-bending perfluorinated POF. Opto-Electron Adv 4, 200041 (2021) . doi: 10.29026/oea.2021.200041

Original Article Open Access

Side-polished SMS based RI sensor employing macro-bending perfluorinated POF

More Information
  • A refractive index (RI) sensor based on perfluorinated plastic optical fiber (PF-POF) is introduced in this paper. The PF-POF as multi-mode fiber was side-polished (SP) to form a macro-bending single-mode-multimode-single-mode (SMS) structure. Both ends of the sensor were closely connected to single-mode quartz optical fiber (SMF). The spectral characteristics of the sensor are measured, analyzed and discussed. The results show that when the length of PF-POF is 8 cm, the macro-bending radius is 3 cm, and the SP-depth is 20 μm. The intensity sensitivity reaches −219.504 dBm/RIU in the range of RI = 1.330 ~ 1.356. A reference is provided for the application of PF-POF in RI sensor in the future. The sensor is featured with low-cost, good flexibility and high efficiency.
  • 加载中
  • [1] Teng HX. Overview of the development of the fluoropolymer industry. Appl Sci 2, 496–512 (2012). doi: 10.3390/app2020496

    CrossRef Google Scholar

    [2] Ma H, Jen AKY, Dalton LR. Polymer-based optical waveguides: materials, processing, and devices. Adv Mater 14, 1339–1365 (2002). doi: 10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O

    CrossRef Google Scholar

    [3] Bharadwaj R, Sai VVR, Thakare K, Dhawangale A, Kundu T et al. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosens Bioelectron 26, 3367–3370 (2011). doi: 10.1016/j.bios.2010.12.014

    CrossRef Google Scholar

    [4] Wang J, Wang LL. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber preform. Opt Lett 35, 3270–3272 (2010). doi: 10.1364/OL.35.003270

    CrossRef Google Scholar

    [5] Han F, Lang TT, Mao BN, Zhao CL, Kang J et al. Surface plasmon resonance sensor based on coreless fiber for high sensitivity. Opt Fiber Technol 50, 172–176 (2019). doi: 10.1016/j.yofte.2019.03.014

    CrossRef Google Scholar

    [6] Chen Q, Liang L, Zheng Q, Zhang Y, Wen L. On‐chip readout plasmonic mid‐IR gas sensor. Opto-Electronic Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [7] Zhao Y, Jin YX, Dong XY, Wang JF. Expermental studies of multimode interference based fiber optic refractive index sensors. Chin J Lasers 37, 1516–1519 (2010). doi: 10.3788/CJL20103706.1516

    CrossRef Google Scholar

    [8] Zhang YJ, Xue LL, Wang TX, Yang L, Zhu B et al. High performance temperature sensing of single mode-multimode-single mode fiber with thermo-optic polymer as cladding of multimode fiber segment. IEEE Sens J 14, 1143–1147 (2014). doi: 10.1109/JSEN.2013.2293536

    CrossRef Google Scholar

    [9] Shi QY, Wang YP, Cui YF, Xia W, Guo DM et al. Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator. IEEE Sens J 18, 9562–9567 (2018). doi: 10.1109/JSEN.2018.2870906

    CrossRef Google Scholar

    [10] Dong Y, Xiao SY, Wu BL, Xiao H, Jian SS. Refractive index and temperature sensor based on D-shaped fiber combined with a fiber Bragg grating. IEEE Sens J 19, 1362–1367 (2019). doi: 10.1109/JSEN.2018.2880305

    CrossRef Google Scholar

    [11] Chen C, Yu YS, Yang R, Wang C, Guo JC et al. Reflective optical fiber sensors based on tilted fiber Bragg gratings fabricated with femtosecond laser. J Lightwave Technol 31, 455–460 (2013). doi: 10.1109/JLT.2012.2232643

    CrossRef Google Scholar

    [12] Zheng YL, Bremer K, Roth B. Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating. Sensors 18, 1436 (2018). doi: 10.3390/s18051436

    CrossRef Google Scholar

    [13] Zhao Y, Cai L, Hu HF. Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure. IEEE Sens J 15, 6348–6353 (2015). doi: 10.1109/JSEN.2015.2458893

    CrossRef Google Scholar

    [14] Zhang MZ, Zhu GX, Lu LD, Lou XP, Zhu LQ. Refractive index sensor based on ultrafine tapered single-mode nocladding single-mode fiber structure. Opt Fiber Technol 48, 297–302 (2019). doi: 10.1016/j.yofte.2019.01.008

    CrossRef Google Scholar

    [15] Bhardwaj V, Gangwar RK, Pathak AK, Singh VK. Uncladded sensing fiber for refractive index measurement. In International Conference on Condensed Matter and Applied Physics (AIP Publishing LLC, 2016).

    Google Scholar

    [16] Zhou JT, Wang YP, Liao CR, Sun B, He J et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sens Actuators B:Chem 208, 315–319 (2015). doi: 10.1016/j.snb.2014.11.014

    CrossRef Google Scholar

    [17] Zhang C, Xu S, Zhao JF, Li HQ, Bai H et al. Intensity-modulated refractive index sensor with anti-light source fluctuation based on no-core fiber filter. Opt Laser Technol 97, 358–363 (2017). doi: 10.1016/j.optlastec.2017.07.023

    CrossRef Google Scholar

    [18] Ong YS, Kam W, Harun SW, Zakaria R, Mohammed WS. Low-Cost Transducer based on surface scattering using side-polished D-shaped optical fibers. IEEE Photon J 7, 7102510 (2015).

    Google Scholar

    [19] Liang QT. Physical Optics 4th ed (Electronic Industry Press, Beijing, 2012).

    Google Scholar

    [20] Guo YK, Bao PD. Optics Course (Sichuan University Press, China, 1989).

    Google Scholar

    [21] Fan XJ, Jiang JF, Zhang XZ, Liu K, Wang S et al. Multimode interferometer-based torsion sensor employing perfluorinated polymer optical fiber. Opt Express 27, 28123–28132 (2019).

    Google Scholar

    [22] Socorro AB, Hernaez M, Del Villar I, Corres JM, Arregui FJ et al. Single-mode—multimode—single-mode and lossy mode resonance-based devices: a comparative study for sensing applications. Microsyst Technol 22, 1633–1638 (2016). doi: 10.1007/s00542-015-2793-z

    CrossRef Google Scholar

    [23] Feng DJ, Zhang MS, Liu GX, Liu XL, Jia DF. D-shaped plastic optical fiber sensor for testing refractive index. IEEE Sens J 14, 1673–1676 (2014). doi: 10.1109/JSEN.2014.2301911

    CrossRef Google Scholar

    [24] George NA, Paul AM, Saranya MS. Microbend fiber optic detection of continuously varying refractive index of chlorinated water. Optik 125, 301–303 (2014). doi: 10.1016/j.ijleo.2013.06.080

    CrossRef Google Scholar

    [25] Schermer RT. Mode scalability in bent optical fibers. Opt Express 15, 15674–15701 (2007). doi: 10.1364/OE.15.015674

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint