Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021).. doi: 10.29026/oea.2021.200061
Citation: Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021).. doi: 10.29026/oea.2021.200061

Original Article Open Access

Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures

More Information
  • Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors, which are inadequate in the most used molding method. Herein, laser direct writing (LDW) method is proposed to fabricate flexible piezoresistive sensors with microstructures on PDMS/ MWCNTs composites with an 8% MWCNTs mass fraction. By controlling laser energy, microstructures with different geometries can be obtained, which significantly impacts the performances of the sensors. Subsequently, curved microcones with excellent performance are fabricated under parameters of f = 40 kHz and v = 150 mm·s-1. The sensor exhibits continuous multi-linear sensitivity, ultrahigh original sensitivity of 21.80 % kPa-1, wide detection range of over 20 kPa, response/recovery time of ~100 ms and good cycle stability for more than 1000 times. Besides, obvious resistance variation can be observed when tiny pressure (a peanut of 30 Pa) is applied. Finally, the flexible piezoresistive sensor can be applied for LED brightness controlling, pulse detection and voice recognition.
  • 加载中
  • [1] Chen WF, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J Mater Sci Technol 43, 175–188 (2020). doi: 10.1016/j.jmst.2019.11.010

    CrossRef Google Scholar

    [2] Chun S, Son W, Choi C. Flexible pressure sensors using highly-oriented and free-standing carbon nanotube sheets. Carbon 139, 586–592 (2018). doi: 10.1016/j.carbon.2018.07.005

    CrossRef Google Scholar

    [3] Deka BK, Hazarika A, Kim J, Jeong HE, Park YB et al. Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon 152, 376–387 (2019). doi: 10.1016/j.carbon.2019.06.015

    CrossRef Google Scholar

    [4] Ma YN, Liu NS, Li LY, Hu XK, Zou ZG et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8, 1207 (2017). doi: 10.1038/s41467-017-01136-9

    CrossRef Google Scholar

    [5] Wei Y, Chen S, Dong XC, Lin Y, Liu L. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene. Carbon 113, 395–403 (2017). doi: 10.1016/j.carbon.2016.11.027

    CrossRef Google Scholar

    [6] Zhang L, Li HQ, Lai XJ, Gao TY, Yang J et al. Thiolated Graphene@Polyester fabric-based multilayer piezoresistive pressure sensors for detecting human motion. ACS Appl Mater Interfaces 10, 41784–41792 (2018). doi: 10.1021/acsami.8b16027

    CrossRef Google Scholar

    [7] Ma LQ, Yu XC, Yang YY, Hu YG, Zhang XY et al. Highly sensitive flexible capacitive pressure sensor with a broad linear response range and finite element analysis of micro-array electrode. J Materiomics 6, 321–329 (2020). doi: 10.1016/j.jmat.2019.12.008

    CrossRef Google Scholar

    [8] Yang XF, Wang YS, Qing XL. A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens Actuators A Phys 299, 111579 (2019). doi: 10.1016/j.sna.2019.111579

    CrossRef Google Scholar

    [9] Tay RY, Li HL, Lin JJ, Wang H, Lim JSK et al. Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv Funct Mater 30, 1909604 (2020). doi: 10.1002/adfm.201909604

    CrossRef Google Scholar

    [10] Jeong SI, Lee EJ, Hong GR, Jo Y, Jung SM et al. Three-dimensional multistack-printed, self-powered flexible pressure sensor arrays: piezoelectric composites with chemically anchored heterogeneous interfaces. ACS Omega 5, 1956–1965 (2020). doi: 10.1021/acsomega.9b03753

    CrossRef Google Scholar

    [11] Xu MZ, Kang H, Guan L, Li HY, Zhang MN. Facile fabrication of a flexible LiNbO3 piezoelectric sensor through hot pressing for biomechanical monitoring. ACS Appl Mater Interfaces 9, 34687–34695 (2017). doi: 10.1021/acsami.7b10411

    CrossRef Google Scholar

    [12] Wang HL, Kuang SY, Li HY, Wang ZL, Zhu G. Large-area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping. Small 16, 1906352 (2020). doi: 10.1002/smll.201906352

    CrossRef Google Scholar

    [13] Fan FR, Lin L, Zhu G, Wu WZ, Zhang R et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12, 3109–3114 (2012). doi: 10.1021/nl300988z

    CrossRef Google Scholar

    [14] Yuan LQ, Wang ZW, Li HW, Huang YN, Wang SG et al. Synergistic resistance modulation toward ultrahighly sensitive piezoresistive pressure sensors. Adv Mater Technol 5, 1901084 (2020). doi: 10.1002/admt.201901084

    CrossRef Google Scholar

    [15] Zhang T, Li ZY, Li K, Yang XN. Flexible pressure sensors with wide linearity range and high sensitivity based on selective laser sintering 3D printing. Adv Mater Technol 4, 1900679 (2019). doi: 10.1002/admt.201900679

    CrossRef Google Scholar

    [16] Pang Y, Zhang KN, Yang Z, Jiang S, Ju ZY et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12, 2346–2354 (2018). doi: 10.1021/acsnano.7b07613

    CrossRef Google Scholar

    [17] Yang CF, Li LL, Zhao JX, Wang JJ, Xie JX et al. Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of polypyrrole films. ACS Appl Mater Interfaces 10, 25811–25818 (2018). doi: 10.1021/acsami.8b08666

    CrossRef Google Scholar

    [18] Liao XQ, Zhang Z, Kang Z, Gao FF, Liao QL et al. Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater Horiz 4, 502–510 (2017). doi: 10.1039/C7MH00071E

    CrossRef Google Scholar

    [19] Kaps S, Bhowmick S, Gröttrup J, Hrkac V, Stauffer D et al. Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. ACS Omega 2, 2985–2993 (2017). doi: 10.1021/acsomega.7b00041

    CrossRef Google Scholar

    [20] Cao MH, Wang MQ, Li L, Qiu HW, Padhiar MA et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 50, 528–535 (2018). doi: 10.1016/j.nanoen.2018.05.038

    CrossRef Google Scholar

    [21] Park J, Kim J, Hong J, Lee H, Lee Y et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Mater 10, 163–176 (2018). doi: 10.1038/s41427-018-0031-8

    CrossRef Google Scholar

    [22] Zhang ZM, Zhang YX, Jiang X, Bukhari H, Zhang ZX et al. Simple and efficient pressure sensor based on PDMS wrapped CNT arrays. Carbon 155, 71–76 (2019). doi: 10.1016/j.carbon.2019.08.018

    CrossRef Google Scholar

    [23] Bae GY, Pak SW, Kim D, Lee G, Kim DH et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28, 5300–5306 (2016). doi: 10.1002/adma.201600408

    CrossRef Google Scholar

    [24] Liu L, Huang Y, Li FY, Ma Y, Li WB et al. Spider-web inspired multi-resolution graphene tactile sensor. Chem Commun 54, 4810–4813 (2018). doi: 10.1039/C8CC02339E

    CrossRef Google Scholar

    [25] Tung TT, Robert C, Castro M, Feller JF, Kim TY et al. Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon 108, 450–460 (2016). doi: 10.1016/j.carbon.2016.07.018

    CrossRef Google Scholar

    [26] Yue Y, Liu NS, Liu WJ, Li M, Ma YA et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). doi: 10.1016/j.nanoen.2018.05.020

    CrossRef Google Scholar

    [27] Gao YY, Yan C, Huang HC, Yang T, Tian G et al. Microchannel-confined mxene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater 30, 1909603 (2020). doi: 10.1002/adfm.201909603

    CrossRef Google Scholar

    [28] Pang Y, Zhang KN, Yang Z, Jiang S, Ju ZY et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12, 2346–2354 (2018). doi: 10.1021/acsnano.7b07613

    CrossRef Google Scholar

    [29] Nie P, Wang RR, Xu XJ, Cheng Y, Wang X et al. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl Mater Interfaces 9, 14911–14919 (2017). doi: 10.1021/acsami.7b01979

    CrossRef Google Scholar

    [30] Wang J, Tenjimbayashi M, Tokura Y, Park JY, Kawase K et al. Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors. ACS Appl Mater Interfaces 10, 30689–30697 (2018). doi: 10.1021/acsami.8b08933

    CrossRef Google Scholar

    [31] Chang TH, Tian Y, Li CS, Gu XY, Li KR et al. Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl Mater Interfaces 11, 10226–10236 (2019). doi: 10.1021/acsami.9b00166

    CrossRef Google Scholar

    [32] Xia KL, Wang CY, Jian MQ, Wang Q, Zhang YY. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res 11, 1124–1134 (2018). doi: 10.1007/s12274-017-1731-z

    CrossRef Google Scholar

    [33] Zhou W, Ling WS, Liu W, Peng YJ, Peng JH. Laser direct micromilling of copper-based bioelectrode with surface microstructure array. Opt Laser Eng 73, 7–15 (2015). doi: 10.1016/j.optlaseng.2015.03.011

    CrossRef Google Scholar

    [34] Gao Y, Li Q, Wu RY, Sha J, Lu YF et al. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv Funct Mater 29, 1806786 (2019). doi: 10.1002/adfm.201806786

    CrossRef Google Scholar

    [35] Xin YY, Zhou J, Xu XZ, Lubineau G. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale 9, 10897–10905 (2017). doi: 10.1039/C7NR01626C

    CrossRef Google Scholar

    [36] Huang KY, Ning HM, Hu N, Liu F, Wu XP et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos Sci Technol 192, 108105 (2020). doi: 10.1016/j.compscitech.2020.108105

    CrossRef Google Scholar

    [37] Lu C, Gao Y, Yu GH, Xu MD, Tan JP et al. Laser-microengineered flexible electrodes with enhanced sensitivity for wearable pressure sensors. Sens Actuators A Phys 281, 124–129 (2018). doi: 10.1016/j.sna.2018.08.046

    CrossRef Google Scholar

    [38] Liu W, Xu FJ, Zhu NH, Wang S. Mechanical and electrical properties of carbon nanotube/polydimethylsiloxane composites yarn. J Eng Fiber Fabr 11, 36–42 (2016).

    Google Scholar

    [39] Romoli L, Fischer F, Kling R. A study on UV laser drilling of PEEK reinforced with carbon fibers. Opt Laser Eng 50, 449–457 (2012). doi: 10.1016/j.optlaseng.2011.10.008

    CrossRef Google Scholar

    [40] Zhang DS, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019).

    Google Scholar

    [41] Wang ZY, Guan X, Huang HY, Wang HF, Lin WE et al. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv Funct Mater 29, 1807569 (2019). doi: 10.1002/adfm.201807569

    CrossRef Google Scholar

    [42] Liu WJ, Liu NS, Yue Y, Rao JY, Cheng F et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14, 1704149 (2018). doi: 10.1002/smll.201704149

    CrossRef Google Scholar

    [43] Luo YH, Wu DZ, Zhao Y, Chen QN, Xie Y et al. Direct write of a flexible high-sensitivity pressure sensor with fast response for electronic skins. Org Electron 67, 10–18 (2019). doi: 10.1016/j.orgel.2019.01.001

    CrossRef Google Scholar

    [44] Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18, 3–10 (2005).

    Google Scholar

    [45] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

  • oea-2020-0061 Supplementary information
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint