Lin XJ, Feng QC, Zhu Y, Ji SH, Xiao B et al. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm. Opto-Electron Adv 4, 210006 (2021). doi: 10.29026/oea.2021.210006
Citation: Lin XJ, Feng QC, Zhu Y, Ji SH, Xiao B et al. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm. Opto-Electron Adv 4, 210006 (2021). doi: 10.29026/oea.2021.210006

Original Article Open Access

Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm

More Information
  • Here we developed a novel wavelength-switchable visible continuous-wave (CW) Pr3+:YLF laser around 670 nm. In single-wavelength laser operations, the maximum output powers of 2.60 W, 1.26 W, and 0.21 W, the maximum slope efficiencies of 34.7%, 27.3%, and 12.3% were achieved with good beam qualities (M2 < 1.6) at 670.4 nm, 674.2 nm, and 678.9 nm, respectively. Record-high output power (2.6 W) and record-high slope efficiency (34.7%) were achieved for the Pr3+:YLF laser operation at 670.4 nm. This is also the first demonstration of longer-wavelength peaks beyond 670 nm in the 3P13F3 transition of Pr3+:YLF. In multi-wavelength laser operations, the dual-wavelength lasings, including 670.1/674.8 nm, 670.1/679.1 nm, and 675.0/679.4 nm, were obtained by fine adjustment of one/two etalons within the cavity. Furthermore, the triple-wavelength lasings, e.g. 672.2/674.2/678.6 nm and 670.4/674.8/679.4 nm, were successfully demonstrated. Moreover, both the first-order vortex lasers (LG0+1 and LG0-1 modes) at 670.4 nm were obtained by off-axis pumping.
  • 加载中
  • [1] Immonen I, Viherkoski E, Peyman GA. Experimental retinal and ciliary body photocoagulation using a new 670-nm diode laser. Am J Ophthalmol 122, 870–874 (1996).

    Google Scholar

    [2] Müller A, Marschall S, Jensen OB, Fricke J, Wenzel H et al. Diode laser based light sources for biomedical applications. Laser Photon Rev 7, 605–627 (2013). doi: 10.1002/lpor.201200051

    CrossRef Google Scholar

    [3] Genovese WJ, dos Santos MTBR, Faloppa F, de Souza Merli LA. The use of surgical diode laser in oral hemangioma: a case report. Photomed Laser Surg 28, 147–151 (2010). doi: 10.1089/pho.2008.2419

    CrossRef Google Scholar

    [4] Nisticò SP, Tolone M, Zingoni T, Tamburi F, Scali E et al. A new 675 nm laser device in the treatment of melasma: results of a prospective observational study. Photobiomodul Photomed Laser Surg 38, 560–564 (2020). doi: 10.1089/photob.2020.4850

    CrossRef Google Scholar

    [5] Cannarozzo G, Silvestri M, Tamburi F, Sicilia C, Del Duca E et al. A new 675-nm laser device in the treatment of acne scars: an observational study. Lasers Med Sci 36, 227–231 (2021). doi: 10.1007/s10103-020-03063-6

    CrossRef Google Scholar

    [6] Yeager RL, Franzosa JA, Millsap DS, Angell-Yeager JL, Heise SS et al. Effects of 670-nm phototherapy on development. Photomed Laser Surg 23, 268–272 (2005). doi: 10.1089/pho.2005.23.268

    CrossRef Google Scholar

    [7] Sommer AP, Bieschke J, Friedrich RP, Zhu D, Wanker EE et al. 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease? Photomed Laser Surg 30, 54–60 (2012). doi: 10.1089/pho.2011.3073

    CrossRef Google Scholar

    [8] Noudeh YJ, Shabani M, Vatankhah N, Hashemian SJ, Akbari K. A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg 28, 621–627 (2010). doi: 10.1089/pho.2009.2634

    CrossRef Google Scholar

    [9] Jeffries GDM, Edgar JS, Zhao YQ, Shelby JP, Fong C et al. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett 7, 415–420 (2007). doi: 10.1021/nl0626784

    CrossRef Google Scholar

    [10] Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987). doi: 10.1126/science.3547653

    CrossRef Google Scholar

    [11] Maruyama H, Kotani K, Masuda T, Honda A, Takahata T et al. Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid Nanofluid 10, 1109–1117 (2011). doi: 10.1007/s10404-010-0739-4

    CrossRef Google Scholar

    [12] Bashkatov AN, Genina EA, Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4, 9–38 (2011). doi: 10.1142/S1793545811001319

    CrossRef Google Scholar

    [13] Yao AY, Hou W, Bi Y, Geng AC, Lin XC et al. High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YVO4 laser. Appl Opt 44, 7156–7160 (2005). doi: 10.1364/AO.44.007156

    CrossRef Google Scholar

    [14] Schneider RP, Choquette KD, Lott JA, Lear KL, Figiel JJ et al. Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser diodes. IEEE Photonics Technol Lett 6, 313–316 (1994). doi: 10.1109/68.275475

    CrossRef Google Scholar

    [15] Metz PW, Reichert F, Moglia F, Müller S, Marzahl DT et al. High-power red, orange, and green Pr3+:LiYF4 lasers. Opt Lett 39, 3193–3196 (2014). doi: 10.1364/OL.39.003193

    CrossRef Google Scholar

    [16] Luo SY, Yan XG, Cui Q, Xu B, Xu HY et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt Commun 380, 357–360 (2016). doi: 10.1016/j.optcom.2016.06.026

    CrossRef Google Scholar

    [17] Tanaka H, Fujita S, Kannari F. High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Appl Opt 57, 5923–5928 (2018). doi: 10.1364/AO.57.005923

    CrossRef Google Scholar

    [18] Lin XJ, Zhu Y, Ji SH, Li WS, Xu HY et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+:YLF lasers. Opt Laser Technol 129, 106281 (2020). doi: 10.1016/j.optlastec.2020.106281

    CrossRef Google Scholar

    [19] Kränkel C, Marzahl DT, Moglia F, Huber G, Metz PW. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev 10, 548–568 (2016). doi: 10.1002/lpor.201500290

    CrossRef Google Scholar

    [20] Chen HJ, Uehara H, Kawase H, Yasuhara R. Efficient Pr:YAlO3 lasers at 622 nm, 662 nm, and 747 nm pumped by semiconductor laser at 488 nm. Opt Express 28, 3017–3024 (2020). doi: 10.1364/OE.380635

    CrossRef Google Scholar

    [21] Qu B, Xu B, Luo SY, Cheng YJ, Xu HY et al. InGaN-LD-Pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal. IEEE Photonics Technol Lett 27, 333–335 (2015). doi: 10.1109/LPT.2014.2365577

    CrossRef Google Scholar

    [22] Qu B, Huang Q. Watt-level diode-pumped continuous-wave Pr:LiYF4 laser at 670 nm and simultaneous dual-wavelength operation at 639 and 670 nm. Appl Opt 59, 3033–3037 (2020). doi: 10.1364/AO.387506

    CrossRef Google Scholar

    [23] Hardman PJ, Clarkson WA, Friel GJ, Pollnau M, Hanna DC. Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals. IEEE J Quantum Electron 35, 647–655 (1999). doi: 10.1109/3.753670

    CrossRef Google Scholar

    [24] Laporta P, Brussard M. Design criteria for mode size optimization in diode-pumped solid-state lasers. IEEE J Quantum Electron 27, 2319–2326 (1991). doi: 10.1109/3.97276

    CrossRef Google Scholar

    [25] Rust DM. Étalon filters. Opt Eng 33, 3342–3348 (1994). doi: 10.1117/12.179401

    CrossRef Google Scholar

    [26] Beijersbergen MW, Allen L, van der Veen HELO, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun 96, 123–132 (1993). doi: 10.1016/0030-4018(93)90535-D

    CrossRef Google Scholar

    [27] Kim DJ, Kim JW. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt Lett 40, 399–402 (2015). doi: 10.1364/OL.40.000399

    CrossRef Google Scholar

    [28] Cui SW, Xu B, Luo SY, Xu HY, Cai ZP et al. Determining topological charge based on an improved Fizeau interferometer. Opt Express 27, 12774–12779 (2019). doi: 10.1364/OE.27.012774

    CrossRef Google Scholar

    [29] Lin XJ, Cui SW, Ji SH, Tian QY, Zhu Y et al. LD-pumped high-power high-efficiency orange vortex Pr3+:YLF lasers. Opt Laser Technol 133, 106571 (2021). doi: 10.1016/j.optlastec.2020.106571

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint