Citation: | Lin XJ, Feng QC, Zhu Y, Ji SH, Xiao B et al. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm. Opto-Electron Adv 4, 210006 (2021). doi: 10.29026/oea.2021.210006 |
[1] | Immonen I, Viherkoski E, Peyman GA. Experimental retinal and ciliary body photocoagulation using a new 670-nm diode laser. Am J Ophthalmol 122, 870–874 (1996). |
[2] | Müller A, Marschall S, Jensen OB, Fricke J, Wenzel H et al. Diode laser based light sources for biomedical applications. Laser Photon Rev 7, 605–627 (2013). doi: 10.1002/lpor.201200051 |
[3] | Genovese WJ, dos Santos MTBR, Faloppa F, de Souza Merli LA. The use of surgical diode laser in oral hemangioma: a case report. Photomed Laser Surg 28, 147–151 (2010). doi: 10.1089/pho.2008.2419 |
[4] | Nisticò SP, Tolone M, Zingoni T, Tamburi F, Scali E et al. A new 675 nm laser device in the treatment of melasma: results of a prospective observational study. Photobiomodul Photomed Laser Surg 38, 560–564 (2020). doi: 10.1089/photob.2020.4850 |
[5] | Cannarozzo G, Silvestri M, Tamburi F, Sicilia C, Del Duca E et al. A new 675-nm laser device in the treatment of acne scars: an observational study. Lasers Med Sci 36, 227–231 (2021). doi: 10.1007/s10103-020-03063-6 |
[6] | Yeager RL, Franzosa JA, Millsap DS, Angell-Yeager JL, Heise SS et al. Effects of 670-nm phototherapy on development. Photomed Laser Surg 23, 268–272 (2005). doi: 10.1089/pho.2005.23.268 |
[7] | Sommer AP, Bieschke J, Friedrich RP, Zhu D, Wanker EE et al. 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease? Photomed Laser Surg 30, 54–60 (2012). doi: 10.1089/pho.2011.3073 |
[8] | Noudeh YJ, Shabani M, Vatankhah N, Hashemian SJ, Akbari K. A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg 28, 621–627 (2010). doi: 10.1089/pho.2009.2634 |
[9] | Jeffries GDM, Edgar JS, Zhao YQ, Shelby JP, Fong C et al. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett 7, 415–420 (2007). doi: 10.1021/nl0626784 |
[10] | Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987). doi: 10.1126/science.3547653 |
[11] | Maruyama H, Kotani K, Masuda T, Honda A, Takahata T et al. Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid Nanofluid 10, 1109–1117 (2011). doi: 10.1007/s10404-010-0739-4 |
[12] | Bashkatov AN, Genina EA, Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4, 9–38 (2011). doi: 10.1142/S1793545811001319 |
[13] | Yao AY, Hou W, Bi Y, Geng AC, Lin XC et al. High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YVO4 laser. Appl Opt 44, 7156–7160 (2005). doi: 10.1364/AO.44.007156 |
[14] | Schneider RP, Choquette KD, Lott JA, Lear KL, Figiel JJ et al. Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser diodes. IEEE Photonics Technol Lett 6, 313–316 (1994). doi: 10.1109/68.275475 |
[15] | Metz PW, Reichert F, Moglia F, Müller S, Marzahl DT et al. High-power red, orange, and green Pr3+:LiYF4 lasers. Opt Lett 39, 3193–3196 (2014). doi: 10.1364/OL.39.003193 |
[16] | Luo SY, Yan XG, Cui Q, Xu B, Xu HY et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt Commun 380, 357–360 (2016). doi: 10.1016/j.optcom.2016.06.026 |
[17] | Tanaka H, Fujita S, Kannari F. High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Appl Opt 57, 5923–5928 (2018). doi: 10.1364/AO.57.005923 |
[18] | Lin XJ, Zhu Y, Ji SH, Li WS, Xu HY et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+:YLF lasers. Opt Laser Technol 129, 106281 (2020). doi: 10.1016/j.optlastec.2020.106281 |
[19] | Kränkel C, Marzahl DT, Moglia F, Huber G, Metz PW. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev 10, 548–568 (2016). doi: 10.1002/lpor.201500290 |
[20] | Chen HJ, Uehara H, Kawase H, Yasuhara R. Efficient Pr:YAlO3 lasers at 622 nm, 662 nm, and 747 nm pumped by semiconductor laser at 488 nm. Opt Express 28, 3017–3024 (2020). doi: 10.1364/OE.380635 |
[21] | Qu B, Xu B, Luo SY, Cheng YJ, Xu HY et al. InGaN-LD-Pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal. IEEE Photonics Technol Lett 27, 333–335 (2015). doi: 10.1109/LPT.2014.2365577 |
[22] | Qu B, Huang Q. Watt-level diode-pumped continuous-wave Pr:LiYF4 laser at 670 nm and simultaneous dual-wavelength operation at 639 and 670 nm. Appl Opt 59, 3033–3037 (2020). doi: 10.1364/AO.387506 |
[23] | Hardman PJ, Clarkson WA, Friel GJ, Pollnau M, Hanna DC. Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals. IEEE J Quantum Electron 35, 647–655 (1999). doi: 10.1109/3.753670 |
[24] | Laporta P, Brussard M. Design criteria for mode size optimization in diode-pumped solid-state lasers. IEEE J Quantum Electron 27, 2319–2326 (1991). doi: 10.1109/3.97276 |
[25] | Rust DM. Étalon filters. Opt Eng 33, 3342–3348 (1994). doi: 10.1117/12.179401 |
[26] | Beijersbergen MW, Allen L, van der Veen HELO, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun 96, 123–132 (1993). doi: 10.1016/0030-4018(93)90535-D |
[27] | Kim DJ, Kim JW. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt Lett 40, 399–402 (2015). doi: 10.1364/OL.40.000399 |
[28] | Cui SW, Xu B, Luo SY, Xu HY, Cai ZP et al. Determining topological charge based on an improved Fizeau interferometer. Opt Express 27, 12774–12779 (2019). doi: 10.1364/OE.27.012774 |
[29] | Lin XJ, Cui SW, Ji SH, Tian QY, Zhu Y et al. LD-pumped high-power high-efficiency orange vortex Pr3+:YLF lasers. Opt Laser Technol 133, 106571 (2021). doi: 10.1016/j.optlastec.2020.106571 |
Schematic of the diode-pumped wavelength-switchable CW visible Pr3+: YLF laser around 670 nm
Experimental results of single-wavelength lasers around 670 nm. (a) Output powers and slope efficiencies with respect to absorbed pump powers. (b) Laser output spectra at 670.4 nm, 674.2 nm, and 678.9 nm, respectively. (c) Measured corresponding M2 factors of 670.4 nm, 674.2 nm, and 678.9 nm, respectively. (d) Power stabilities of lasers at 670.4 nm, 674.2 nm, and 678.9 nm
Emission cross sections of Pr3+:YLF crystal around 670 nm under room temperature.
Simulation results of the input-output power characteristics at 670 nm. BR is the waist beam radius of the laser; SE is the slope efficiency. 0.103 mm is the smallest beam radius which can be obtained by the cavity parameters.
(a) Output characteristics of dual-wavelength lasers around 670 nm, i.e., 670.1/674.8, 670.1/679.1, 675.0/679.4 nm, respectively. (b) Laser output spectra of dual-wavelength lasers measured at the maximum output powers of 2.52, 1.80, and 0.36 W, respectively. (c) Laser output spectra of triple-wavelength lasers measured at the output powers of 1.78 and 0.84 W, respectively. (d) Power stabilities of the dual-wavelength lasers. (e) Power stabilities of the triple-wavelength lasers.
(a) Output performance of the visible vortex laser at 670.4 nm (